This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272823 #16 Mar 07 2025 01:28:41 %S A272823 1,4,32,336,4032,52336,715392,10144192,147836416,2200709040, %T A272823 33319564288,511496462656,7942988228608,124551530359360, %U A272823 1969386732874752,31364967043386112,502686338657607680,8101474649157519536,131212844750426749696,2134554132316280052288,34862936239396076532736,571454628433830080180288,9397626191659208856570880,155006334509119865698297600,2563700952357088703495372800 %N A272823 G.f. satisfies: A(x) = 1 + 4*x*AGM(A(x), A(x)^3). %C A272823 Here AGM(x,y) = AGM((x+y)/2, sqrt(x*y)) denotes the arithmetic-geometric mean. %H A272823 Vaclav Kotesovec, <a href="/A272823/b272823.txt">Table of n, a(n) for n = 0..630</a> %F A272823 G.f. satisfies: %F A272823 (1) A(x) = 1 + 4*x*AGM(A(x)^2, (A(x) + A(x)^3)/2). %F A272823 (2) A(x) = 1 + 4*Series_Reversion( x / AGM(1+4*x, (1+4*x)^3) ). %F A272823 a(n) ~ c * d^n / n^(3/2), where d = 17.6088646774568498919315031912184045773663297219819943809841685080399155... and c = 0.3922200012562096239034743054558268956365939170567699740621520897631... - _Vaclav Kotesovec_, Nov 15 2023 %e A272823 G.f.: A(x) = 1 + 4*x + 32*x^2 + 336*x^3 + 4032*x^4 + 52336*x^5 + 715392*x^6 + 10144192*x^7 + 147836416*x^8 + 2200709040*x^9 + 33319564288*x^10 +... %e A272823 where A(x) = 1 + 4*x*AGM(A(x), A(x)^3). %e A272823 RELATED SERIES. %e A272823 A(x)^2 = 1 + 8*x + 80*x^2 + 928*x^3 + 11776*x^4 + 158432*x^5 + 2220416*x^6 + 32070528*x^7 + 474038272*x^8 + 7136118624*x^9 + 109031206528*x^10 +... %e A272823 A(x)^3 = 1 + 12*x + 144*x^2 + 1840*x^3 + 24768*x^4 + 346704*x^5 + 4999424*x^6 + 73774656*x^7 + 1108876800*x^8 + 16918514448*x^9 + 261355433856*x^10 +... %e A272823 (A(x) + A(x)^3)/2 = 1 + 8*x + 88*x^2 + 1088*x^3 + 14400*x^4 + 199520*x^5 + 2857408*x^6 + 41959424*x^7 + 628356608*x^8 + 9559611744*x^9 + 147337499072*x^10 +... %e A272823 where A(x) = 1 + 4*x*AGM(A(x)^2, (A(x) + A(x)^3)/2). %e A272823 AGM(1+4*x, (1+4*x)^3) = 1 + 8*x + 20*x^2 + 16*x^3 - 4*x^4 + 16*x^6 - 64*x^7 + 172*x^8 - 352*x^9 + 560*x^10 - 832*x^11 + 2512*x^12 - 13568*x^13 + 65984*x^14 +... %e A272823 where A(x) = 1 + 4*Series_Reversion( x / AGM(1+4*x, (1+4*x)^3) ). %t A272823 (* Calculation of constants {d,c}: *) {1/r, s*(s - 1)*Sqrt[(1 + s)*(1 + s^2) / (2*Pi*(1 + 2*s + 2*s^2 + 2*s^3 - 7*s^4 + 4*s^5))]} /. FindRoot[{2*Pi*r*s^3 / EllipticK[1 - 1/s^4] == s - 1, Pi*r*(1 + s + s^2 + s^3 - 2*s^4) == (1 - s)*s * EllipticE[1 - 1/s^4]}, {r, 1/18}, {s, 3/2}, WorkingPrecision -> 80] (* _Vaclav Kotesovec_, Nov 15 2023 *) %o A272823 (PARI) /* From definition: A(x) = 1 + 4*x*AGM(A(x), A(x)^3) */ %o A272823 {a(n)=local(A=1+4*x + x*O(x^n)); for(i=1, n, A = 1 + 4*x*agm(A, A^3)); polcoeff(A, n)} %o A272823 for(n=0,30,print1(a(n),", ")) %o A272823 (PARI) /* From formula: A(x) = 1 + 4*x*AGM(A(x)^2, (A(x) + A(x)^3)/2) */ %o A272823 {a(n)=local(A=1+4*x + x*O(x^n)); for(i=1, n, A = 1 + 4*x*agm(A^2, (A + A^3)/2)); polcoeff(A, n)} %o A272823 for(n=0,30,print1(a(n),", ")) %o A272823 (PARI) /* From A(x) = 1 + 4*Series_Reversion(x/AGM(1+4*x, (1+4*x)^3)) */ %o A272823 {a(n) = my(A=1); A = 1 + 4*serreverse(x/agm(1+4*x,(1+4*x)^3 +x*O(x^n))); polcoeff(A,n)} %o A272823 for(n=0,30,print1(a(n),", ")) %Y A272823 Cf. A171454, A272822. %K A272823 nonn %O A272823 0,2 %A A272823 _Paul D. Hanna_, May 07 2016