A272830 Numbers k such that (8*10^k - 29)/3 is prime.
1, 2, 3, 8, 9, 10, 16, 31, 35, 79, 179, 196, 239, 376, 515, 728, 812, 1154, 2000, 2379, 2485, 3523, 3987, 5221, 5257, 5739, 17863, 59127, 106454, 125894
Offset: 1
Examples
3 is in this sequence because (8*10^3 - 29)/3 = 2657 is prime. Initial terms and associated primes: a(1) = 1, 17; a(2) = 2, 257; a(3) = 3, 2657; a(4) = 8, 266666657; a(5) = 9, 2666666657, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 26w57.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(8*10^# - 29)/3] &]
-
PARI
is(n)=ispseudoprime((8*10^n-29)/3) \\ Charles R Greathouse IV, Jun 13 2017
Extensions
a(29)-a(30) from Robert Price, Jul 03 2018
Comments