This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272856 #13 Sep 05 2018 02:28:58 %S A272856 5,7,16,19,32,35,50,76,81,108,140,139,171,206,254,259,305,346,349,404, %T A272856 449,504,582,634,645,699,707,772,930,1006,1078,1097,1258,1271,1362, %U A272856 1448,1529,1633,1737,1752,1951,1970,2064,2082,2310,2550,2659,2672,2783,2917 %N A272856 Greatest length of a chain of consecutive primes p==1 (mod 3) for which A261029 (2*prime(n)*p) is 4-i if prime(n) == i (mod 3), where i=1,2. %e A272856 Let n=3; then prime(n)=5. Since 5 == 2 (mod 3), i=2. So a(3) is the greatest length of a chain of consecutive primes p == 1 (mod 3) for which A261029(10*p) = 4 - 2 = 2. So these primes are in A272381. The first term is 7, and we have the chain of consecutive primes == 1 (mod 3): {7, 13, 19, 31, 37}. Since the following prime 43 == 1 (mod 3) is not in A272381, the chain ends and its length is 5. The second chain is the singleton {71}. So a(3)=5. %t A272856 a261029[n_]:=a261029[n]={x,y,z}/.{ToRules[Reduce[x^3+y^3+z^3-3 x y z==n&&0<=x<=y<=z&&z>=x+1,Integers]]}/.{x,y,z}->{}; %t A272856 data={}; %t A272856 Do[p=Prime[n]; %t A272856 primes=Select[Prime[Range[1+PrimePi[(2p)^2]]],Mod[#,3]==1&]; %t A272856 tmp=Map[{#,Length[a261029[2 # p]]}&,primes]; %t A272856 AppendTo[data,{{n,2p,1+Mod[2p,3]},{{Length[#],Max[Map[Length,Select[Split[Differences[Flatten[Map[Position[primes,#,1,1]&,#]]]],#[[1]]==1&]]+1]},#}&[Map[#[[1]]&,Select[tmp,#[[2]]==(1+Mod[2p,3])&]]]}];Print[Last[data]],{n,3,10}] %t A272856 Map[Length[a261029[#]]&,Range[0,20]] (* A261029 *) %t A272856 Last[Last[data[[1]]]] (* A272381 *) %t A272856 Last[Last[data[[2]]]] (* A272382 *) %t A272856 Last[Last[data[[3]]]] (* A272384 *) %t A272856 Last[Last[data[[4]]]] (* A272404 *) %t A272856 Last[Last[data[[5]]]] (* A272406 *) %t A272856 Last[Last[data[[6]]]] (* A272407 *) %t A272856 Last[Last[data[[7]]]] (* A272409 *) %t A272856 Map[#[[2]][[1]][[1]]&,data] (* A268665 *) %t A272856 Map[#[[2]][[1]][[2]]&,data] (* A272856 *) %Y A272856 Cf. A261029, A268665, A272381, A272382, A272384, A272404, A272406, A272407, A272409. %K A272856 nonn %O A272856 3,1 %A A272856 _Vladimir Shevelev_ and _Peter J. C. Moses_, May 08 2016