A272857 Least k>1 such that the Euler totient function of powers k^e, 1 <= e <= n, are divisible by the number their divisors, d(k^e).
3, 3, 13, 61, 61, 421, 2521, 2521, 2521, 55441, 55441, 4324321, 4324321, 4324321, 4324321, 85765681, 85765681, 232792561, 232792561, 232792561, 232792561
Offset: 1
Examples
phi(3) / d(3) = 2 / 2 = 1, phi(3^2) / d(3^2) = 6 / 3 = 2 but phi(3^3) / d(3^3) = 18 / 4 = 9 / 2; phi(13) / d(13) = 12 / 2 = 6, phi(13^2) / d(13^2) = 156 / 3 = 52, phi(13^3) / d(13^3) = 2028 / 4 = 507 but phi(13^4) / d(13^4) = 26364 / 5.
Programs
-
Maple
with(numtheory): P:= proc(q) local a, j, k, ok, p; global n; a:=2; for k from 1 to q do for n from a to q do ok:=1; for j from 1 to k do if not type(phi(n^j)/tau(n^j), integer) then ok:=0; break; fi; od; if ok=1 then a:=n; print(n); break; fi; od; od; end: P(10^9);
Comments