cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272860 Sums of two primes (in increasing order) when equal to the product of their prime-counting functions.

This page as a plain text file.
%I A272860 #72 Feb 16 2025 08:33:34
%S A272860 12,18,24,96,116,120,984,990,996,8408,23616,23742,23850,24030,24066,
%T A272860 24084,480324,480336,481344,3523814,3523842,3523884,3524514,9557160,
%U A272860 9558030,9558240,9558300,25874592,25874640,70119798,189960894,189961344,189962352,189963594,189963630,189969102
%N A272860 Sums of two primes (in increasing order) when equal to the product of their prime-counting functions.
%C A272860 Each term is necessarily even and 3 < p < q in the formula n = p+q = pi(p)*pi(q). Indeed, assuming p<=q, if p=2 then n = 2+q = pi(2)*pi(q) = pi(q) < q. Inequality p > 3 easily follows from prime(k) > k*log(k) and if p=q then 2*p = pi(p)^2 with no solution.
%C A272860 Primes p,q can only occur for a finite number of terms n (see comments in A273286).
%C A272860 Conjecture: the sequence is infinite and each term has only one decomposition into a sum of suitable primes p,q.
%C A272860 From _David A. Corneth_, Jun 28 2016: (Start)
%C A272860 Pi(p) and pi(q) seem dependent on each other. Below is a small list of pi(p), the least corresponding pi(q) and the largest corresponding pi(q). If a value of pi(p) isn't listed, no terms are formed with it.
%C A272860 3, 4, 8
%C A272860 4, 24, 30
%C A272860 6, 164, 166
%C A272860 8, 1051, 1051
%C A272860 9, 2624, 2676
%C A272860 12, 40027, 40112
%C A272860 Can these bounds on pi(q) be expressed in terms of pi(p)? (End)
%H A272860 Giuseppe Coppoletta, <a href="/A272860/b272860.txt">Table of n, a(n) for n = 1..43</a>
%H A272860 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RossersTheorem.html">Rosser's Theorem</a>
%H A272860 Pierre Dusart, <a href="http://arxiv.org/abs/1002.0442/">Estimates of some functions over primes without R.H.</a>, arXiv:1002.0442 [math.NT], 2010.
%F A272860 Numbers n = p+q = pi(p)*pi(q) for some primes p and q.
%F A272860 Equivalently, n = i*j = prime(i) + prime(j) for some i,j.
%F A272860 A272862 gives the corresponding terms pi(q) (with q>p). The terms pi(p) are given by A272860 / A272862
%e A272860 12 is a term because 12 = 5 + 7 = pi(5) * pi(7).
%t A272860 Select[Range[10^3], Function[n, MemberQ[Times @@ # & /@ PrimePi@ Select[Transpose@ {#, n - #} &@ Range[Floor[n/2]], Times @@ Boole@ PrimeQ@ {First@ #, Last@ #} == 1 &], n]]] (* _Michael De Vlieger_, Jun 29 2016 *)
%o A272860 (Sage)
%o A272860 def sol(n):
%o A272860     return [k for k in divisors(n) if k^2<= n and is_prime(n-nth_prime(k)) and k*prime_pi(n-nth_prime(k))==n]
%o A272860 N=25000
%o A272860 v=[n for n in range(2,N,2) if len(sol(n))>0]
%o A272860 print('A272862 =',v)
%o A272860 list_pi=flatten([sol(n) for n in range(2,N,2) if sol(n)])
%o A272860 print('list_pi(p) =',list_pi)
%Y A272860 Cf. A272861, A272862, A273286, A000040, A000720.
%K A272860 nonn
%O A272860 1,1
%A A272860 _Giuseppe Coppoletta_, Jun 19 2016
%E A272860 More terms from _David A. Corneth_, Jun 28 2016