This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272860 #72 Feb 16 2025 08:33:34 %S A272860 12,18,24,96,116,120,984,990,996,8408,23616,23742,23850,24030,24066, %T A272860 24084,480324,480336,481344,3523814,3523842,3523884,3524514,9557160, %U A272860 9558030,9558240,9558300,25874592,25874640,70119798,189960894,189961344,189962352,189963594,189963630,189969102 %N A272860 Sums of two primes (in increasing order) when equal to the product of their prime-counting functions. %C A272860 Each term is necessarily even and 3 < p < q in the formula n = p+q = pi(p)*pi(q). Indeed, assuming p<=q, if p=2 then n = 2+q = pi(2)*pi(q) = pi(q) < q. Inequality p > 3 easily follows from prime(k) > k*log(k) and if p=q then 2*p = pi(p)^2 with no solution. %C A272860 Primes p,q can only occur for a finite number of terms n (see comments in A273286). %C A272860 Conjecture: the sequence is infinite and each term has only one decomposition into a sum of suitable primes p,q. %C A272860 From _David A. Corneth_, Jun 28 2016: (Start) %C A272860 Pi(p) and pi(q) seem dependent on each other. Below is a small list of pi(p), the least corresponding pi(q) and the largest corresponding pi(q). If a value of pi(p) isn't listed, no terms are formed with it. %C A272860 3, 4, 8 %C A272860 4, 24, 30 %C A272860 6, 164, 166 %C A272860 8, 1051, 1051 %C A272860 9, 2624, 2676 %C A272860 12, 40027, 40112 %C A272860 Can these bounds on pi(q) be expressed in terms of pi(p)? (End) %H A272860 Giuseppe Coppoletta, <a href="/A272860/b272860.txt">Table of n, a(n) for n = 1..43</a> %H A272860 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RossersTheorem.html">Rosser's Theorem</a> %H A272860 Pierre Dusart, <a href="http://arxiv.org/abs/1002.0442/">Estimates of some functions over primes without R.H.</a>, arXiv:1002.0442 [math.NT], 2010. %F A272860 Numbers n = p+q = pi(p)*pi(q) for some primes p and q. %F A272860 Equivalently, n = i*j = prime(i) + prime(j) for some i,j. %F A272860 A272862 gives the corresponding terms pi(q) (with q>p). The terms pi(p) are given by A272860 / A272862 %e A272860 12 is a term because 12 = 5 + 7 = pi(5) * pi(7). %t A272860 Select[Range[10^3], Function[n, MemberQ[Times @@ # & /@ PrimePi@ Select[Transpose@ {#, n - #} &@ Range[Floor[n/2]], Times @@ Boole@ PrimeQ@ {First@ #, Last@ #} == 1 &], n]]] (* _Michael De Vlieger_, Jun 29 2016 *) %o A272860 (Sage) %o A272860 def sol(n): %o A272860 return [k for k in divisors(n) if k^2<= n and is_prime(n-nth_prime(k)) and k*prime_pi(n-nth_prime(k))==n] %o A272860 N=25000 %o A272860 v=[n for n in range(2,N,2) if len(sol(n))>0] %o A272860 print('A272862 =',v) %o A272860 list_pi=flatten([sol(n) for n in range(2,N,2) if sol(n)]) %o A272860 print('list_pi(p) =',list_pi) %Y A272860 Cf. A272861, A272862, A273286, A000040, A000720. %K A272860 nonn %O A272860 1,1 %A A272860 _Giuseppe Coppoletta_, Jun 19 2016 %E A272860 More terms from _David A. Corneth_, Jun 28 2016