cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272865 Triangle read by rows, T(n,k) are covariances of inverse power traces of complex Wishart matrices with parameter c=2, for n>=1 and 1<=k<=n.

This page as a plain text file.
%I A272865 #18 Jul 20 2019 12:27:14
%S A272865 4,24,160,132,936,5700,720,5312,33264,198144,3940,29880,190980,
%T A272865 1155600,6823620,21672,167712,1088856,6670656,39786120,233908896,
%U A272865 119812,941640,6189540,38300976,230340740,1363667256,7997325700
%N A272865 Triangle read by rows, T(n,k) are covariances of inverse power traces of complex Wishart matrices with parameter c=2, for n>=1 and 1<=k<=n.
%C A272865 These numbers provide the covariances of power traces of the time-delay matrix when the scattering matrix belongs to the Dyson ensembles.
%C A272865 Relation with A047781 and A002002. See eq. (60) and (61) in Cunden et al., J. Phys. A: Math. Theor. 49, 18LT01 (2016).
%D A272865 F. D. Cunden, "Statistical distribution of the Wigner-Smith time-delay matrix moments for chaotic cavities", Phys. Rev. E 91, 060102(R) (2015).
%D A272865 F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, "Correlators for the Wigner-Smith time-delay matrix of chaotic cavities", J. Phys. A: Math. Theor. 49, 18LT01 (2016).
%D A272865 F. D. Cunden, F. Mezzadri, N. O'Connell and N. Simm, "Moments of Random Matrices and Hypergeometric Orthogonal Polynomials", Commun. Math. Phys. 369, 1091-1145 (2019).
%H A272865 F. D. Cunden, <a href="http://arxiv.org/abs/1412.2172">Statistical distribution of the Wigner-Smith time-delay matrix moments for chaotic cavities</a>, arXiv:1412.2172 [cond-mat.mes-hall], 2014-2015.
%H A272865 F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, <a href="http://arxiv.org/abs/1601.06690">Correlators for the Wigner-Smith time-delay matrix of chaotic cavities</a>, arXiv:1601.06690 [math-ph], 2016.
%H A272865 F. D. Cunden, F. Mezzadri, N. O'Connell and N. Simm, <a href="https://arxiv.org/abs/1805.08760">Moments of Random Matrices and Hypergeometric Orthogonal Polynomials</a>, arXiv:1805.08760 [math-ph], 2018.
%F A272865 G.f.: ((x*y)/(x-y)^2)*((x*y-3(x+y)+1)/(sqrt(x^2-6x+1)*sqrt(y^2-6y+1))-1).
%F A272865 T(n,1)/4 = A050151(n) for n>=1. - _Peter Luschny_, May 08 2016
%e A272865 Triangle starts:
%e A272865 4;
%e A272865 24,   160;
%e A272865 132,  936,   5700;
%e A272865 720,  5312,  33264,  198144;
%e A272865 3940, 29880, 190980, 1155600, 6823620;
%p A272865 P := (n,k) -> simplify(n*hypergeom([1-k,k+1],[1],-1)*hypergeom([1-n,n+1],[2],-1)): seq(seq(4*(n*k)*(P(n,k)+P(k,n))/(n+k),k=1..n),n=1..7); # _Peter Luschny_, May 08 2016
%t A272865 Clear["Global`*"];(*Wigner-Smith Covariance*)
%t A272865 P[k_] := Sum[Binomial[k - 1, j] Binomial[k + j, j], {j, 0, k - 1}]
%t A272865 Q[k_] := Sum[Binomial[k, j + 1] Binomial[k + j, j], {j, 0, k - 1}]
%t A272865 a[k1_, k2_] := 4 (k1 k2)/(k1 + k2) (P[k1] Q[k2] + P[k2] Q[k1])
%t A272865 L = 10; Table[a[k, l], {k, 1, L}, {l, 1, k}]
%Y A272865 Cf. A002002, A047781, A050151.
%K A272865 nonn,tabl
%O A272865 1,1
%A A272865 _Fabio Deelan Cunden_, May 08 2016