cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272866 Triangle read by rows, T(n,k) = GegenbauerC(m,-n,-3/2) where m = k if k=0 and 0<=k<=2n.

Original entry on oeis.org

1, 1, 3, 1, 1, 6, 11, 6, 1, 1, 9, 30, 45, 30, 9, 1, 1, 12, 58, 144, 195, 144, 58, 12, 1, 1, 15, 95, 330, 685, 873, 685, 330, 95, 15, 1, 1, 18, 141, 630, 1770, 3258, 3989, 3258, 1770, 630, 141, 18, 1, 1, 21, 196, 1071, 3801, 9198, 15533, 18483, 15533, 9198, 3801, 1071, 196, 21, 1
Offset: 0

Views

Author

Peter Luschny, May 08 2016

Keywords

Comments

From R. J. Mathar, Nov 05 2021: (Start)
These are the antidiagonals of the following array with the bivariate generating function 1/(1-x^2-3*x*y-y^2):
1 0 1 0 1 0 1 0 1 0 1 ...
0 3 0 6 0 9 0 12 0 15 0 ...
1 0 11 0 30 0 58 0 95 0 141 ...
0 6 0 45 0 144 0 330 0 630 0 ...
1 0 30 0 195 0 685 0 1770 0 3801 ...
0 9 0 144 0 873 0 3258 0 9198 0 ...
1 0 58 0 685 0 3989 0 15533 0 46928 ...
0 12 0 330 0 3258 0 18483 0 74280 0 ...
1 0 95 0 1770 0 15533 0 86515 0 356283 ...
0 15 0 630 0 9198 0 74280 0 408105 0 ...
1 0 141 0 3801 0 46928 0 356283 0 1936881 ... (End)

Examples

			                                1;
                            1,  3, 1;
                         1, 6, 11, 6, 1;
                     1, 9, 30, 45, 30, 9, 1;
              1, 12, 58, 144, 195, 144, 58, 12, 1;
         1, 15, 95, 330, 685, 873, 685, 330, 95, 15, 1;
		

Crossrefs

Programs

  • Maple
    T := (n,k) -> simplify(GegenbauerC(`if`(k
    				
  • Mathematica
    Table[If[n == 0, 1, GegenbauerC[If[k < n, k, 2 n - k], -n, -3/2]], {n, 0, 7}, {k, 0, 2 n}] // Flatten (* Michael De Vlieger, Aug 02 2019 *)

Formula

T(n,n) = A026375(n) for n>=0.
T(n,n-1) = A026376(n) for n>=1.
T(n,n+1)/n = A002212(n) for n>=1.