A272866
Triangle read by rows, T(n,k) = GegenbauerC(m,-n,-3/2) where m = k if k=0 and 0<=k<=2n.
1, 1, 3, 1, 1, 6, 11, 6, 1, 1, 9, 30, 45, 30, 9, 1, 1, 12, 58, 144, 195, 144, 58, 12, 1, 1, 15, 95, 330, 685, 873, 685, 330, 95, 15, 1, 1, 18, 141, 630, 1770, 3258, 3989, 3258, 1770, 630, 141, 18, 1, 1, 21, 196, 1071, 3801, 9198, 15533, 18483, 15533, 9198, 3801, 1071, 196, 21, 1
Offset: 0
Examples
1; 1, 3, 1; 1, 6, 11, 6, 1; 1, 9, 30, 45, 30, 9, 1; 1, 12, 58, 144, 195, 144, 58, 12, 1; 1, 15, 95, 330, 685, 873, 685, 330, 95, 15, 1;
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10200 (rows 0 <= n <= 100, flattened).
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 6.
- László Németh, Tetrahedron trinomial coefficient transform, Integers (2019) 19, Article A41.
Programs
-
Maple
T := (n,k) -> simplify(GegenbauerC(`if`(k
-
Mathematica
Table[If[n == 0, 1, GegenbauerC[If[k < n, k, 2 n - k], -n, -3/2]], {n, 0, 7}, {k, 0, 2 n}] // Flatten (* Michael De Vlieger, Aug 02 2019 *)
Comments