This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272867 #9 Apr 03 2017 20:37:57 %S A272867 1,1,4,1,1,8,18,8,1,1,12,51,88,51,12,1,1,16,100,304,454,304,100,16,1, %T A272867 1,20,165,720,1770,2424,1770,720,165,20,1,1,24,246,1400,4815,10224, %U A272867 13236,10224,4815,1400,246,24,1 %N A272867 Triangle read by rows, T(n,k) = GegenbauerC(m,-n,-2) where m = k if k<n else 2*n-k, for n>=0 and 0<=k<=2n. %H A272867 Indranil Ghosh, <a href="/A272867/b272867.txt">Rows 0..50, flattened</a> %F A272867 T(n,n) = A081671(n) for n>=0. %F A272867 T(n+1,n+2)/(n+1) = A005572(n) for n>=0. %e A272867 1; %e A272867 1, 4, 1; %e A272867 1, 8, 18, 8, 1; %e A272867 1, 12, 51, 88, 51, 12, 1; %e A272867 1, 16, 100, 304, 454, 304, 100, 16, 1; %e A272867 1, 20, 165, 720, 1770, 2424, 1770, 720, 165, 20, 1; %e A272867 1, 24, 246, 1400, 4815, 10224, 13236, 10224, 4815, 1400, 246, 24, 1; %p A272867 T := (n,k) -> simplify(GegenbauerC(`if`(k<n,k,2*n-k),-n, -2)): %p A272867 for n from 0 to 8 do seq(T(n,k), k=0..2*n) od; %t A272867 T[n_, k_]:=If[n<1, 1, If[k<n, GegenbauerC[k, -n, -2], GegenbauerC[2n - k, -n, -2]]]; Table[T[n, k], {n, 0, 10}, {k, 0, 2n}] // Flatten (* _Indranil Ghosh_, Apr 03 2017 *) %Y A272867 Cf. A005572, A081671. %K A272867 nonn,tabf %O A272867 0,3 %A A272867 _Peter Luschny_, May 08 2016