A272904 Rectangular array, by antidiagonals: row n gives the positions of n in the Fibonacci-products fractal sequence, A272900.
1, 2, 4, 3, 6, 8, 5, 9, 11, 15, 7, 12, 14, 19, 23, 10, 16, 18, 24, 28, 34, 13, 20, 22, 29, 33, 40, 46, 17, 25, 27, 35, 39, 47, 53, 61, 21, 30, 32, 41, 45, 54, 60, 69, 77, 26, 36, 38, 48, 52, 62, 68, 78, 86, 96, 31, 42, 44, 55, 59, 70, 76, 87, 95, 106, 116
Offset: 1
Examples
Northwest corner: 1 2 3 4 6 9 12 15 5 7 10 13 17 21 26 31 8 11 14 18 2 27 32 38 16 20 25 30 36 42 49 56 23 28 33 39 45 52 59 67 35 41 48 55 63 71 80 89 46 53 60 68 76 85 94 104
Links
- Clark Kimberling, Orderings of products of Fibonacci numbers, Fibonacci Quarterly 42:1 (2004), pp. 28-35.
Programs
-
Mathematica
z = 500; f[n_] := Fibonacci[n + 1]; u1 = Table[f[n], {n, 1, z}]; u2 = Sort[Flatten[Table[f[i]*f[j], {i, 1, z}, {j, i, z}]]]; uf = Table[Select[Range[80], MemberQ[u1, u2[[i]]/f[#]] &][[1]], {i, 1, z}] r[n_, k_] := Flatten[Position[uf, n]][[k]] TableForm[Table[r[n, k], {n, 1, 12}, {k, 1, 12}]] (* A272904 array *) t = Table[r[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A272904 sequence *)
Comments