A272908 Rectangular array, by antidiagonals: row n give the positions of n in the Lucas-products fractal sequence, A272907.
1, 2, 5, 3, 7, 8, 4, 10, 11, 16, 6, 13, 14, 20, 23, 9, 17, 18, 25, 28, 35, 12, 21, 22, 30, 33, 41, 46, 15, 26, 27, 36, 39, 48, 53, 62, 19, 31, 32, 42, 45, 55, 60, 70, 77, 24, 37, 38, 49, 52, 63, 68, 79, 86, 97, 29, 43, 44, 56, 59, 71, 76, 88, 95, 107, 116
Offset: 1
Examples
Northwest corner: 1 2 3 4 6 9 12 15 5 7 10 13 17 21 26 31 8 11 14 18 22 27 32 38 16 20 25 30 36 42 49 56 23 28 33 39 45 52 59 67 35 41 48 55 63 71 80 89 46 53 60 68 76 85 94 104
Programs
-
Mathematica
z = 500; f[n_] := LucasL[n]; u1 = Table[f[n], {n, 1, z}]; u2 = Sort[Flatten[Table[f[i]*f[j], {i, 1, z}, {j, i, z}]]]; uf = Table[Select[Range[80], MemberQ[u1, u2[[i]]/f[#]] &][[1]], {i, 1, z}] r[n_, k_] := Flatten[Position[uf, n]][[k]] TableForm[Table[r[n, k], {n, 1, 12}, {k, 1, 12}]] (* A272908 array *) Table[r[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A272908 sequence *)
Comments