A272912 Difference sequence of the sequence A116470 of all distinct Fibonacci numbers and Lucas numbers (A000032).
1, 1, 1, 1, 2, 1, 3, 2, 5, 3, 8, 5, 13, 8, 21, 13, 34, 21, 55, 34, 89, 55, 144, 89, 233, 144, 377, 233, 610, 377, 987, 610, 1597, 987, 2584, 1597, 4181, 2584, 6765, 4181, 10946, 6765, 17711, 10946, 28657, 17711, 46368, 28657, 75025, 46368, 121393, 75025
Offset: 1
Examples
A116470 = (1, 2, 3, 4, 5, 7, 8, 11, 13, 18, 21, 29, 34, 47, 55, 76,...), so that (a(n)) = (1,1,1,1,2,1,3,2,5,3,8,5,13,8,12,...).
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,1).
Programs
-
Mathematica
u = Table[Fibonacci[n], {n, 1, 200}]; v = Table[LucasL[n], {n, 1, 200}]; Take[Differences[Union[u, v]], 100]
-
PARI
Vec(x*(1+x-x^5)/(1-x^2-x^4) + O(x^50)) \\ Colin Barker, May 10 2016
Formula
From Colin Barker, May 10 2016: (Start)
a(n) = a(n-2)+a(n-4) for n>4.
G.f.: x*(1+x-x^5) / (1-x^2-x^4).
(End)
a(n) = A053602(n-2), n>2. - R. J. Mathar, May 20 2016
a(n) = A123231(n-3), n>3. - Georg Fischer, Oct 23 2018
Comments