A272929 Numbers k such that (8*10^k - 77)/3 is prime.
2, 4, 5, 6, 15, 18, 43, 45, 55, 60, 105, 128, 180, 207, 271, 479, 869, 1220, 1478, 1937, 4003, 4213, 5503, 9562, 11388, 13120, 34049, 47178, 156371, 271039
Offset: 1
Examples
4 is in this sequence because (8*10^4 - 77)/3 = 26641 is prime. Initial terms and associated primes: a(1) = 2, 241; a(2) = 4, 26641; a(3) = 5, 266641; a(4) = 6, 2666641; a(5) = 15, 2666666666666641, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 26w41.
Programs
-
Mathematica
Select[Range[1, 100000], PrimeQ[(8*10^# - 77)/3] &]
-
PARI
lista(nn) = {for(n=1, nn, if(ispseudoprime((8*10^n - 77)/3), print1(n, ", ")));} \\ Altug Alkan, May 11 2016
Extensions
a(29) from Robert Price, Jul 07 2018
a(30) from Robert Price, Jul 02 2023
Comments