This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272947 #11 Feb 17 2018 20:04:12 %S A272947 1,1,1,1,1,2,1,2,1,2,2,1,2,2,3,1,2,2,2,3,1,2,2,2,3,3,1,2,2,2,2,3,3,3, %T A272947 1,2,2,2,2,3,3,3,3,1,4,2,2,2,2,2,3,3,3,3,3,1,4,2,2,2,2,2,3,3,3,3,3,3, %U A272947 3,1,4,4,2,2,2,2,2,2,3,3,3,3,3,3,3,3 %N A272947 Number of factors Fibonacci(i) > 1 of A160009(n+1). %H A272947 MathOverflow, <a href="http://mathoverflow.net/questions/238505/distinctness-of-products-of-fibonacci-numbers">Distinctness of products of Fibonacci numbers</a> %e A272947 A160009(15) = 30 = 2*3*5, so that a(15) = 3. %t A272947 s = {1}; nn = 60; f = Fibonacci[2 + Range[nn]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[nn]] &]], {i, nn}]; s = Prepend[s, 0]; Take[s, 100] (* A160009 *) %t A272947 isFibonacciQ[n_] := Apply[Or, Map[IntegerQ, Sqrt[{# + 4, # - 4} &[5 n^2]]]]; %t A272947 ans = Join[{{0}}, {{1}}, Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[Rest[Subsets[Rest[Map[#[[1]] &, Select[Map[{#, isFibonacciQ[#]} &, Divisors[s[[n]]]], #[[2]] &]]]]]], {n, 3, 500}]] %t A272947 Map[Length, ans] (* A272947 *) %t A272947 Flatten[Position[Map[Length, ans], 1]] (* A272948 *) %t A272947 Map[Apply[Times, #] &, Select[ans, Length[#] == 1 &]] (* A000045 *) %t A272947 Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A271354 *) %t A272947 Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A272949 *) %t A272947 Map[Apply[Times, #] &, Select[ans, Length[#] == 4 &]] (* A272950 *) %t A272947 (* _Peter J. C. Moses_, May 11 2016 *) %Y A272947 Cf. A000045, A160009, A272948, A271354, A272949, A273950. %K A272947 nonn,easy %O A272947 1,6 %A A272947 _Clark Kimberling_, May 13 2016