This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272980 #24 Sep 18 2019 20:51:39 %S A272980 2,60,1056,1260,1441440,551350800,42226984800,111924212400, %T A272980 11251629148359600,284440457440339200,582249616380374342400, %U A272980 621260340677859423340800,621260340677859423340800,921088919608373507667359523840000000 %N A272980 Least k>1 such that all powers k^e, 1 <= e <= n, are divisible by the number of their divisors, d(k^e). %F A272980 2 / d(2) = 2 / 2 = 1 but 2^2 / d(2^2) = 4 / 3; %F A272980 60 / d(60) = 60 / 12 = 5, 60^2 / d (60^2) = 3600 / 45 = 80 but 60^3 / d(60^3) = 216000 / 112 = 13500 / 7. %p A272980 with(numtheory): P:= proc(q) local a,j,k,ok,n,p; a:=2; %p A272980 for k from 1 to q do for n from a to q do ok:=1; %p A272980 for j from 1 to k do if not type(n^j/tau(n^j),integer) then ok:=0; break; fi; od; %p A272980 if ok=1 then a:=n; print(n); break; fi; od; od; end: P(10^9); %t A272980 Table[SelectFirst[Range[2, 2*10^6], AllTrue[#^Range@ n, Divisible[#, DivisorSigma[0, #]] &] &], {n, 5}] (* _Michael De Vlieger_, May 12 2016, Version 10 *) %Y A272980 Cf. A000005, A272981. %K A272980 nonn %O A272980 1,1 %A A272980 _Paolo P. Lava_, May 12 2016 %E A272980 a(6)-a(14) from _Giovanni Resta_, May 12 2016