cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272981 Least prime k>1 such that the sum of divisors of powers k^e, 1 <= e <= n, are divisible by the number their divisors, d(k^e).

Original entry on oeis.org

3, 7, 7, 31, 31, 211, 211, 211, 211, 2311, 2311, 120121, 120121, 120121, 120121, 4084081, 4084081, 106696591, 106696591, 106696591, 106696591, 892371481, 892371481, 892371481, 892371481, 892371481, 892371481, 71166625531, 71166625531, 200560490131, 200560490131
Offset: 1

Views

Author

Paolo P. Lava, May 12 2016

Keywords

Comments

For 1A272981(n) = A092967(n+1).
The different numbers are listed in A073917.

Examples

			sigma(3) / d(3) = 4 / 2 = 2 but sigma(3^2) / d(3^2) = 13 / 3;
sigma(7) / d(7) = 8 / 2 = 4, sigma(7^2) / d(7^2) = 57 / 3 = 19, sigma(7^3) / d(7^3) = 400 / 4 = 100 but sigma(7^4) / d(7^4) = 2801 / 5.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:= proc(q) local a,j,k,ok,p; global n; a:=2;
    for k from 1 to q do for n from a to q do ok:=1;
    for j from 1 to k do if not type(sigma(n^j)/tau(n^j),integer) then ok:=0; break; fi; od;
    if ok=1 then a:=n; print(n); break; fi; od; od; end: P(10^9);
  • Mathematica
    Table[SelectFirst[Range[2, 10^6], AllTrue[#^Range@ n, Divisible[DivisorSigma[1, #], DivisorSigma[0, #]] &] &], {n, 15}] (* Michael De Vlieger, May 12 2016, Version 10 *)