cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272988 Convolution of the sequence of derangement numbers A000166 with itself.

This page as a plain text file.
%I A272988 #17 Oct 06 2017 18:30:01
%S A272988 1,0,2,4,19,92,552,3832,30453,272552,2713710,29752156,356133959,
%T A272988 4620985700,64600445812,967927029168,15473320537001,262864036323600,
%U A272988 4728905854617562,89808092596277364,1795480569403712699,37693097921348983852,829024574048725950016,19063166411687276701736
%N A272988 Convolution of the sequence of derangement numbers A000166 with itself.
%H A272988 Vaclav Kotesovec, <a href="/A272988/b272988.txt">Table of n, a(n) for n = 0..440</a>
%F A272988 a(n) = Sum_{i=0..n} A000166(i)*A000166(n-i).
%F A272988 G.f.: ( 1/(1 + x) + Sum_{k>=1} k^k*x^k/(1 + (k + 1)*x)^(k+1) )^2. - _Ilya Gutkovskiy_, Apr 13 2017
%F A272988 a(n) ~ 2*exp(-1)*n!. - _Vaclav Kotesovec_, Apr 13 2017
%e A272988 For n = 4, we get 1*9 + 0*2 + 1*1 + 2*0 + 9*1 = 19.
%t A272988 Table[Sum[Subfactorial[k] Subfactorial[n - k], {k, 0, n}], {n, 0, 30}] (* _Emanuele Munarini_, Oct 06 2017 *)
%Y A272988 Cf. A000166.
%K A272988 easy,nonn
%O A272988 0,3
%A A272988 _J. C. George_, May 12 2016