cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273001 Number of permutations of [n] whose cycle lengths are Fibonacci numbers.

This page as a plain text file.
%I A273001 #14 Jul 22 2018 11:14:49
%S A273001 1,1,2,6,18,90,420,2220,19020,130860,1096920,9862920,83843640,
%T A273001 1411202520,16144792560,203091829200,2989264122000,37012939750800,
%U A273001 597962683188000,8681244913692000,126467701221607200,5006833609034743200,95602098255580238400
%N A273001 Number of permutations of [n] whose cycle lengths are Fibonacci numbers.
%H A273001 Alois P. Heinz, <a href="/A273001/b273001.txt">Table of n, a(n) for n = 0..451</a>
%F A273001 E.g.f.: exp(Sum_{n>=2} x^F(n)/F(n)) with F = A000045.
%p A273001 a:= proc(n) option remember; `if`(n=0, 1, add(
%p A273001       `if`(issqr(5*j^2+4) or issqr(5*j^2-4),
%p A273001        a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))
%p A273001     end:
%p A273001 seq(a(n), n=0..25);
%t A273001 a[n_] := a[n] = If[n == 0, 1, Sum[If[IntegerQ @ Sqrt[5*j^2+4] || IntegerQ @ Sqrt[5*j^2-4], a[n-j]*(j-1)!*Binomial[n-1, j-1], 0], {j, 1, n}]]; Table[ a[n], {n, 0, 25}] (* _Jean-François Alcover_, Jan 30 2017, translated from Maple *)
%Y A273001 Cf. A000045, A193374, A205801, A218002, A272603, A273994, A317128.
%K A273001 nonn
%O A273001 0,3
%A A273001 _Alois P. Heinz_, May 12 2016