cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273012 Totient of the n-th semiprime.

Original entry on oeis.org

2, 2, 6, 4, 6, 8, 12, 10, 20, 12, 20, 16, 24, 18, 24, 22, 42, 32, 40, 36, 28, 30, 48, 44, 36, 60, 40, 64, 42, 56, 72, 60, 46, 72, 52, 72, 88, 58, 96, 110, 60, 80, 84, 108, 66, 92, 70, 120, 112, 72, 120, 78, 104, 132, 82, 156, 116, 88, 120, 144, 160, 96, 132, 100
Offset: 1

Views

Author

Altug Alkan, May 13 2016

Keywords

Examples

			a(3) = 6 because A000010(9) = 2*3 = 6.
		

Crossrefs

Cf. A000010, A001358, A006093 (totients of primes), A006881, A228578.

Programs

  • Maple
    A273012 := proc(n)
        numtheory[phi](A001358(n)) ;
    end proc:
    seq(A273012(n),n=1..40) ; # R. J. Mathar, Nov 13 2016
  • Mathematica
    EulerPhi@ Select[Range@ 202, PrimeOmega@ # == 2 &] (* Michael De Vlieger, May 13 2016 *)
  • PARI
    lista(nn) = for(n=1, nn, if(bigomega(n) == 2, print1(eulerphi(n), ", ")));

Formula

a(n) = phi(semiprime(n)) = A000010(A001358(n)), where phi is Euler's totient function.
If A001358(n) = p^2, then a(n) = p*(p-1).
If A001358(n) = p*q where p and q are distinct, then a(n) = (p-1)*(q-1).
If A001358(n) = A006881(i), then a(n) = n+1-A228578(i). - R. J. Mathar, Nov 13 2016