This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273020 #19 Mar 01 2020 07:45:28 %S A273020 1,1,3,5,19,39,141,321,1107,2675,8953,22483,73789,190345,616227, %T A273020 1621413,5196627,13882947,44152809,119385663,377379369,1030434069, %U A273020 3241135527,8921880135,27948336381,77459553549,241813226151,674100041501,2098240353907,5878674505303,18252025766941 %N A273020 a(n) = Sum_{k=0..n} C(n,k)*((-1)^n*(C(k,n-k)-C(k,n-k-1))+C(n-k,k+1)). %H A273020 A. Bostan and M. Kauers, <a href="http://arxiv.org/abs/0811.2899">Automatic Classification of Restricted Lattice Walks</a>, arXiv:0811.2899 (2008). %F A273020 a(n) = JacobiP(n, 1, -n-3/2, -7)/(n+1) + GegenbauerC(n-1, -n, -1/2), with a(0) = 1. %F A273020 a(n) = hypergeom([-n,1/2], [2], 4) + n*hypergeom([-n/2+1,-n/2+1/2], [2], 4). %F A273020 a(n) = (-1)^n*A005043(n) + A005717(n). %F A273020 a(2*n) = A082758(n). %F A273020 a(2*n+1) = A273019(n). %p A273020 seq(simplify(hypergeom([-n,1/2],[2],4) + n*hypergeom([-n/2+1,-n/2+1/2],[2],4)), n=0..30); %t A273020 Table[ JacobiP[n, 1, -n-3/2, -7]/(n+1) + GegenbauerC[n-1,-n,-1/2], {n,0,30} ] %o A273020 (Sage) %o A273020 def A(): %o A273020 a, b, c, d, n = 0, 1, 1, -1, 1 %o A273020 yield 1 %o A273020 while True: %o A273020 yield d + b*(1-(-1)^n) %o A273020 n += 1 %o A273020 a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)//((n+1)*(n-1)) %o A273020 c, d = d, (3*(n-1)*c-(2*n-1)*d)//n %o A273020 A273020 = A() %o A273020 print([next(A273020) for _ in range(31)]) %Y A273020 Cf. A005043, A005717, A082758, A273019. %K A273020 nonn %O A273020 0,3 %A A273020 _Peter Luschny_, May 13 2016