This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273041 #14 May 14 2016 13:43:54 %S A273041 1,2,5,5,11,11,16,16,23,23,23,23,47,47,64,64,64,64,71,71,141,141,141, %T A273041 141,173,173,173,173,173,173,173,201,251,251,251,251,251,251,251,313, %U A273041 313,313,383,383,383,383,383,519,519,519,519,519,519,519,519,519,601,601,601,601,601,601,601,601,601,601 %N A273041 Discriminator of the Catalan numbers A000108. %C A273041 The discriminator of a sequence is the least positive integer k such that the first n terms of the sequence are pairwise distinct modulo k. %H A273041 Robert Israel, <a href="/A273041/b273041.txt">Table of n, a(n) for n = 1..1127</a> %p A273041 N = 100: # to get a(1) .. a(N) %p A273041 F:= proc(m) %p A273041 local G, i,j,x,S; %p A273041 G:= 1+x; S:= {1}; %p A273041 for i from 2 do %p A273041 G:= convert(series((x*G^2-1)/(2*x*G-1),x,2^i+1),polynom) mod m; %p A273041 for j from 2^(i-1) to 2^i do %p A273041 S:= S union {coeff(G,x,j)}; %p A273041 if nops(S) < j then return j-1 fi %p A273041 od: %p A273041 od %p A273041 end proc: %p A273041 nmax:= 1: A[1]:= 1: %p A273041 for k from 2 while nmax < N do %p A273041 v:= F(k); %p A273041 if v > nmax then %p A273041 for j from nmax+1 to v do A[j]:= k od: %p A273041 nmax:= v; %p A273041 fi: %p A273041 od: %p A273041 seq(A[i],i=1..N); # _Robert Israel_, May 13 2016 %Y A273041 Cf. A000108. %K A273041 nonn %O A273041 1,2 %A A273041 _Jeffrey Shallit_, May 13 2016