cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273050 Numbers k such that ror(k) XOR rol(k) = k, where ror(x)=A038572(x) is x rotated one binary place to the right, rol(x)=A006257(x) is x rotated one binary place to the left, and XOR is the binary exclusive-or operator.

Original entry on oeis.org

0, 5, 6, 45, 54, 365, 438, 2925, 3510, 23405, 28086, 187245, 224694, 1497965, 1797558, 11983725, 14380470, 95869805, 115043766, 766958445, 920350134, 6135667565, 7362801078, 49085340525, 58902408630, 392682724205, 471219269046
Offset: 1

Views

Author

Alex Ratushnyak, May 13 2016

Keywords

Crossrefs

Cf. A006257, A038572, A088163, A125836 (bisection?), A125837 (bisection?).
Cf. A020988 (numbers k such that ror(k) + rol(k) = k).

Programs

  • Mathematica
    ok[n_] := Block[{x = IntegerDigits[n, 2]}, x == BitXor @@@ Transpose@ {RotateLeft@ x, RotateRight@ x}]; Select[ Range[0, 10^5], ok] (* Giovanni Resta, May 14 2016 *)
    ok[n_] := Block[{x = IntegerDigits[n, 2]}, x == BitXor @@@ Transpose[ {RotateLeft[x], RotateRight[x]}]]; Select[LinearRecurrence[{0, 9, 0, -8}, {0, 5, 6, 45}, 100], ok] (* Jean-François Alcover, May 22 2016, after Giovanni Resta *)
  • Python
    def ROR(n):                # returns A038572(n)
        BL = len(bin(n))-2
        return (n>>1) + ((n&1) << (BL-1))
    def ROL(n):                # returns A006257(n) for n>0
        BL = len(bin(n))-2
        return (n*2) - (1<
    				

Formula

Conjectures from Colin Barker, May 22 2016: (Start)
a(n) = (-11+(-1)^n+2^(-1/2+(3*n)/2)*(3-3*(-1)^n+5*sqrt(2)+5*(-1)^n*sqrt(2)))/14.
a(n) = 5*(2^(3*n/2)-1)/7 for n even.
a(n) = 3*(2^((3*n)/2-1/2)-2)/7 for n odd.
a(n) = 9*a(n-2)-8*a(n-4) for n>4.
G.f.: x^2*(5+6*x) / ((1-x)*(1+x)*(1-8*x^2)).
(End)

Extensions

a(19)-a(27) from Giovanni Resta, May 14 2016