cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273058 Numbers having pairwise coprime exponents in their canonical prime factorization.

This page as a plain text file.
%I A273058 #30 Jan 14 2017 16:55:54
%S A273058 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
%T A273058 27,28,29,30,31,32,33,34,35,37,38,39,40,41,42,43,44,45,46,47,48,49,50,
%U A273058 51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70
%N A273058 Numbers having pairwise coprime exponents in their canonical prime factorization.
%C A273058 The complement of A072413.
%H A273058 Giuseppe Coppoletta, <a href="/A273058/b273058.txt">Table of n, a(n) for n = 1..10000</a>
%F A273058 A005361(a(n)) = A072411(a(n)).
%e A273058 36 is not a term because 36 = 2^2 * 3^2 and gcd(2,2) = 2 > 1.
%e A273058 360 is a term because 360 = 2^3 * 3^2 * 5 and gcd(3,2) = gcd(2,1) = 1.
%e A273058 10800 is not a term because 10800 = 2^4 * 3^3 * 5^2 and gcd(4,2) > 1
%t A273058 Select[Range@ 120, LCM @@ # == Times @@ # &@ Map[Last, FactorInteger@ #] &] (* _Michael De Vlieger_, May 15 2016 *)
%o A273058 (Sage) def d(n):
%o A273058     v=factor(n)[:]; L=len(v); diff=prod(v[j][1] for j in range(L)) - lcm([v[j][1] for j in range(L)])
%o A273058     return diff
%o A273058 [k for k in (1..100) if d(k)==0]
%o A273058 (PARI) is(n)=my(f=factor(n)[,2]); factorback(f)==lcm(f) \\ _Charles R Greathouse IV_, Jan 14 2017
%Y A273058 Cf. A005361, A072411, A130091, A072413.
%K A273058 nonn
%O A273058 1,2
%A A273058 _Giuseppe Coppoletta_, May 14 2016