A273061 Nearest integer to the França-Leclair approximation 2*Pi*(n - 11/8)/LambertW((n - 11/8)/exp(1)) of the Riemann zeta zeros.
15, 21, 25, 30, 34, 37, 41, 44, 47, 50, 53, 56, 59, 62, 64, 67, 70, 72, 75, 77, 80, 82, 85, 87, 90, 92, 94, 97, 99, 101, 103, 106, 108, 110, 112, 114, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 142, 144, 146, 148, 150, 151, 153, 155, 157, 159, 161, 163
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Guilherme França and André LeClair, A theory for the zeros of Riemann Zeta and other L-functions, arXiv:1407.4358 [math.NT], 2014, formula (163) at page 47.
- Mats Granvik, Mathematica program for the iterative formula.
- Eric Weisstein, Gram Point.
Programs
-
Mathematica
(*The nearest integer to the França-Leclair approximation*) Round[Table[2*Pi*(n - 11/8)/ProductLog[(n - 11/8)/Exp[1]], {n, 1, 60}]] (*The nearest integer to t such that Re(zeta(1/2+I*t))=0 while Im(zeta(1/2+I*t))=/0*) Round[x /. Table[FindRoot[Re[Zeta[1/2 + I*x]] == 0, {x, 2*Pi*Exp[1]*Exp[ProductLog[(n - 11/8)/Exp[1]]]}], {n, 1, 60}]] Clear[a, n, g]; a[n_] := g /. FindRoot[RiemannSiegelTheta[g] == Pi*(2*n - 1)/2, {g, 2*Pi*Exp[1]*Exp[ProductLog[(n - 11/8)/Exp[1]]]}]; a = Table[Round[a[n]], {n, 0, 60 - 1}] (* after Jean-François Alcover in A002505 *)
-
PARI
a(n)=round(2*Pi*exp(lambertw((n-11/8)/exp(1))+1)) \\ Works for n > 1 on GP 2.8.0; Charles R Greathouse IV, May 15 2016
-
Sage
R = RealField(100) a = lambda n: R(2*pi*(n - 11/8)/lambert_w((n - 11/8)/exp(1))) print([a(n).round() for n in (1..60)]) # Peter Luschny, May 19 2016
Formula
a(n) = round(2*Pi*(n - 11/8)/LambertW((n - 11/8)/exp(1))).
a(n) = round(2*Pi*exp(1)*exp(LambertW((n - 11/8)/exp(1)))). - Mats Granvik, Feb 27 2017
a(n) = round(2*Pi*exp(1 + LambertW((8*(n - 3/2) + 1)/(8*e)))) after the formula in MathWorld. - Mats Granvik, Feb 25 2017
For c = 1/2 the n-th complementary Gram point x is the fixed point solution to the iterative formula: x = 2*Pi*e*e^LambertW(((x/(2*Pi))*log(x/(2*Pi*e)) - c + n - 1 - RiemannSiegelTheta(x)/Pi)/e). - Mats Granvik, Jul 24 2017
Comments