cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273061 Nearest integer to the França-Leclair approximation 2*Pi*(n - 11/8)/LambertW((n - 11/8)/exp(1)) of the Riemann zeta zeros.

Original entry on oeis.org

15, 21, 25, 30, 34, 37, 41, 44, 47, 50, 53, 56, 59, 62, 64, 67, 70, 72, 75, 77, 80, 82, 85, 87, 90, 92, 94, 97, 99, 101, 103, 106, 108, 110, 112, 114, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 142, 144, 146, 148, 150, 151, 153, 155, 157, 159, 161, 163
Offset: 1

Views

Author

Mats Granvik, May 14 2016

Keywords

Comments

This sequence is also the nearest integer to the n-th point t on the critical line such that Re(zeta(1/2+i*t))=0 and such that Im(zeta(1/2+i*t)) is not equal to zero, when excluding t=0.819545... Verified for the first 10000 cases. See Mathematica program for how to verify this.
Roger Bagula pointed out that the difference between the approximation and the points t, resembles a hyperbola.
Compare this sequence to the Gram points A002505.
The first point t such that Re(zeta(1/2+i*t))=0 and Im(zeta(1/2+i*t)) is not equal to zero, is: t(1)=14.5179196282622336505419642930... while for n=1 the França-Leclair approximation is 14.5213469530656281679750582094... This gives an error of 0.0034273248033... This decreases to 0.0003990193059... by n=10.

Crossrefs

Programs

  • Mathematica
    (*The nearest integer to the França-Leclair approximation*)
    Round[Table[2*Pi*(n - 11/8)/ProductLog[(n - 11/8)/Exp[1]], {n, 1, 60}]]
    (*The nearest integer to t such that Re(zeta(1/2+I*t))=0 while Im(zeta(1/2+I*t))=/0*)
    Round[x /. Table[FindRoot[Re[Zeta[1/2 + I*x]] == 0, {x, 2*Pi*Exp[1]*Exp[ProductLog[(n - 11/8)/Exp[1]]]}], {n, 1, 60}]]
    Clear[a, n, g]; a[n_] := g /. FindRoot[RiemannSiegelTheta[g] == Pi*(2*n - 1)/2, {g, 2*Pi*Exp[1]*Exp[ProductLog[(n - 11/8)/Exp[1]]]}]; a = Table[Round[a[n]], {n, 0, 60 - 1}] (* after Jean-François Alcover in A002505 *)
  • PARI
    a(n)=round(2*Pi*exp(lambertw((n-11/8)/exp(1))+1)) \\ Works for n > 1 on GP 2.8.0; Charles R Greathouse IV, May 15 2016
    
  • Sage
    R = RealField(100)
    a = lambda n: R(2*pi*(n - 11/8)/lambert_w((n - 11/8)/exp(1)))
    print([a(n).round() for n in (1..60)]) # Peter Luschny, May 19 2016

Formula

a(n) = round(2*Pi*(n - 11/8)/LambertW((n - 11/8)/exp(1))).
a(n) = round(2*Pi*exp(1)*exp(LambertW((n - 11/8)/exp(1)))). - Mats Granvik, Feb 27 2017
a(n) = round(2*Pi*exp(1 + LambertW((8*(n - 3/2) + 1)/(8*e)))) after the formula in MathWorld. - Mats Granvik, Feb 25 2017
For c = 1/2 the n-th complementary Gram point x is the fixed point solution to the iterative formula: x = 2*Pi*e*e^LambertW(((x/(2*Pi))*log(x/(2*Pi*e)) - c + n - 1 - RiemannSiegelTheta(x)/Pi)/e). - Mats Granvik, Jul 24 2017