This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273081 #13 Sep 08 2022 08:46:16 %S A273081 1,0,0,0,1,6,1,3,9,9,0,3,5,1,4,0,6,9,4,0,2,1,5,0,2,0,7,0,3,8,9,3,9,9, %T A273081 5,7,3,8,8,7,5,0,8,3,9,1,2,4,2,3,7,5,2,8,9,3,7,2,7,9,9,8,6,3,1,3,9,1, %U A273081 4,4,3,7,0,4,5,5,1,8,7,4,5,3,4,8,5,1,2,8,5,4,2,4,9,3,0,0,7,1,2,0,4,7,3,7,1 %N A273081 Decimal expansion of theta_3(0, exp(-3*Pi)), where theta_3 is the 3rd Jacobi theta function. %H A273081 G. C. Greubel, <a href="/A273081/b273081.txt">Table of n, a(n) for n = 1..10000</a> %H A273081 Wikipedia, <a href="http://en.wikipedia.org/wiki/Theta_function#Explicit_values">Theta function</a> %F A273081 Equals (1 + 2/sqrt(3))^(1/4) * Pi^(1/4) / (3^(1/4) * Gamma(3/4)). %e A273081 1.0001613990351406940215020703893995738875083912423752893728... %p A273081 evalf((1 + 2/sqrt(3))^(1/4) * Pi^(1/4) / (3^(1/4) * GAMMA(3/4)), 120); %t A273081 RealDigits[EllipticTheta[3, 0, Exp[-3*Pi]], 10, 105][[1]] %t A273081 RealDigits[(1 + 2/Sqrt[3])^(1/4) * Pi^(1/4) / (3^(1/4) * Gamma[3/4]), 10, 105][[1]] %o A273081 (PARI) sqrtn((2/sqrt(3)+1)*Pi/3,4)/gamma(3/4) \\ _Charles R Greathouse IV_, Jun 06 2016 %o A273081 (Magma) C<i> := ComplexField(); (1+2/Sqrt(3))^(1/4)*Pi(C)^(1/4)/(3^(1/4) *Gamma(3/4)) // _G. C. Greubel_, Jan 07 2018 %Y A273081 Cf. A175573, A247217, A273082, A273083, A273084. %K A273081 nonn,cons %O A273081 1,6 %A A273081 _Vaclav Kotesovec_, May 14 2016