A273086 Decimal expansion of theta_3(0, exp(-sqrt(6)*Pi)), where theta_3 is the 3rd Jacobi theta function.
1, 0, 0, 0, 9, 0, 9, 9, 2, 1, 8, 8, 7, 2, 5, 6, 7, 6, 2, 9, 1, 9, 2, 8, 6, 0, 0, 4, 1, 2, 1, 5, 6, 6, 6, 7, 1, 8, 0, 4, 5, 8, 8, 1, 4, 6, 7, 3, 0, 3, 0, 1, 3, 3, 0, 8, 5, 9, 2, 4, 1, 7, 9, 6, 8, 1, 3, 9, 5, 8, 5, 4, 2, 0, 8, 7, 9, 5, 0, 0, 5, 6, 3, 3, 2, 7, 5, 4, 2, 2, 0, 2, 2, 1, 8, 2, 9, 1, 1, 4, 7, 4, 2, 1, 8
Offset: 1
Examples
1.0009099218872567629192860041215666718045881467303013308592...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's MathWorld, Jacobi Theta Functions
- Wikipedia, Theta function
Programs
-
Maple
evalf(((6 + sqrt(6*(3 + 2*sqrt(2)))) * GAMMA(1/24) * GAMMA(5/24) * GAMMA(7/24) * GAMMA(11/24))^(1/4) / (2*6^(3/8)*Pi^(3/4)), 120); evalf((4 - sqrt(2) + sqrt(6))^(1/4) * sqrt(GAMMA(1/24)*GAMMA(11/24)) / (2^(3/2)*3^(3/8)*Pi^(3/4)), 120);
-
Mathematica
RealDigits[EllipticTheta[3, 0, Exp[-Sqrt[6]*Pi]], 10, 105][[1]] RealDigits[((6 + Sqrt[6*(3 + 2*Sqrt[2])]) * Gamma[1/24] * Gamma[5/24] * Gamma[7/24] * Gamma[11/24])^(1/4) / (2*6^(3/8)*Pi^(3/4)), 10, 105][[1]] RealDigits[(4 - Sqrt[2] + Sqrt[6])^(1/4) * Sqrt[Gamma[1/24]*Gamma[11/24]] / (2^(3/2)*3^(3/8)*Pi^(3/4)), 10, 105][[1]]
-
PARI
th3(x)=1 + 2*suminf(n=1,x^n^2) th3(exp(-sqrt(6)*Pi)) \\ Charles R Greathouse IV, Jun 06 2016
Formula
Equals ((6 + sqrt(6*(3 + 2*sqrt(2)))) * Gamma(1/24) * Gamma(5/24) * Gamma(7/24) * Gamma(11/24))^(1/4) / (2*6^(3/8)*Pi^(3/4)).
Equals (4 - sqrt(2) + sqrt(6))^(1/4) * sqrt(Gamma(1/24)*Gamma(11/24)) / (2^(3/2)*3^(3/8)*Pi^(3/4)).