This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273090 #7 May 15 2016 08:33:48 %S A273090 2,62,2,116,1532,2,200,6402,50830,2,318,19884,446930,1855110,2,476, %T A273090 51128,2460462,34121322,71292624,2,682,115188,10106370,332112068, %U A273090 2741227176,2833906726,2,946,235180,33905948,2177193500,47162138964 %N A273090 Rectangular array A read by upward antidiagonals in which the entry A(n,k) in row k and column n gives the number of families of symmetric radially generated monohedral tilings of the disk (each tiling contains 2*(2*n+1)*k congruent tiles), k >= 1, n >= 1. %C A273090 Enumeration is equivalent to counting beaded necklaces of a certain class (see A047996). For details and definitions, see the arXiv preprint by Haddley and Worsley. %H A273090 Joel Haddley, Stephen Worsley, <a href="http://arxiv.org/abs/1512.03794">Infinite families of monohedral disk tilings</a>, arXiv preprint arXiv:1512.03794v2 [math.MG], 2016. %F A273090 A(1,n) = 2, A(k,n) = 2*Sum_{i=0..2*(2*n+1)}Sum_{d | i, d | (2*(2*n+1)-i)*k} (phi(d)/i)*binomial((2*(2*n+1)-i)*k/d+i/d-1, i/d-1), k >= 2, n >= 1 [Haddley, Worsley, Proposition 5.1]. %e A273090 Array begins: %e A273090 . 2 2 2 2 2 2 %e A273090 . 62 1532 50830 1855110 71292624 2833906726 %e A273090 . 116 6402 446930 34121322 2741227176 227759341712 %e A273090 . 200 19884 2460462 332112068 47162138964 6926365932512 %e A273090 . 318 51128 10106370 2177193500 493416845604 115646287581042 %e A273090 . 476 115188 33905948 10874491594 3668999040616 1280224897307324 %t A273090 a[1, n_] := 2; a[k_, n_] := 2*(1 + Sum[(1/i)*Sum[EulerPhi[d]*Binomial[(2*(2*n + 1) - i)*k/d + i/d - 1, i/d - 1], {d, Divisors[GCD[i, (2*(2*n + 1) - i)*k]]}], {i, 2*(2*n + 1)}]); %t A273090 (* Array: *) %t A273090 Grid[Table[a[k, n], {k, 6}, {n, 6}]] %t A273090 (* Or array antidiagonals flattened: *) %t A273090 Flatten[Table[a[k - n + 1, n], {k, 7}, {n, k}]] %Y A273090 Cf. A047996. %K A273090 nonn,tabl %O A273090 1,1 %A A273090 _L. Edson Jeffery_, May 14 2016