cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273093 Decimal expansion of the probability that three positive integers are pairwise not coprime.

This page as a plain text file.
%I A273093 #25 Feb 16 2025 08:33:35
%S A273093 1,7,4,2,1,9,7,8,3,0,3,4,7,2,4,7,0,0,5,5,8,5,7,4,0,7,2,1,8,0,5,3,4,6,
%T A273093 9,1,6,5,1,1,0,5,7,5,1,8,7,0,3,1,3,5,5,7,2,3,3,2,6,3,7,0,5,1,6,4,6,0,
%U A273093 0,7,3,6,0,3,1,0,6,7,9,3,2,6,2,5,3,6,5,9,3,0,3,5,9,1,0,6,6,0,4,9
%N A273093 Decimal expansion of the probability that three positive integers are pairwise not coprime.
%D A273093 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, 2.5.1 Carefree Couples, p. 110.
%H A273093 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, arXiv:2001.00578 [math.HO], 2020, p. 15.
%H A273093 Randell Heyman, <a href="https://arxiv.org/abs/1309.5578">Pairwise non-coprimality of triples</a>, arXiv preprint, arXiv:1309.5578 [math.NT], 2013-2014.
%H A273093 Randell Heyman, <a href="http://unsworks.unsw.edu.au/fapi/datastream/unsworks:36429/SOURCE02?view=true">Topics in divisibility: pairwise coprimality, the GCD of shifted sets and polynomial irreducibility</a>, PhD thesis, University of New South Wales, 2015.
%H A273093 Pieter Moree, <a href="http://arxiv.org/abs/math/0510003">Counting carefree couples</a>, arXiv:math/0510003 [math.NT], 2005-2014.
%H A273093 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/CarefreeCouple.html">Carefree Couple</a>.
%F A273093 Equals 1 - 18/Pi^2 + 3P - Q, where P is A065464 and Q is A065473.
%e A273093 0.1742197830347247005585740721805346916511057518703135572332637051646...
%t A273093 $MaxExtraPrecision = 1000; digits = 100; terms = 2000; LR = Join[{0, 0}, LinearRecurrence[{-2, 0, 1}, {-2, 3, -6}, terms + 10]]; r[n_Integer] := LR[[n]];
%t A273093 P = (6/Pi^2)*Exp[NSum[r[n]*(PrimeZetaP[n - 1]/(n - 1)), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10, Method -> "AlternatingSigns"]];
%t A273093 Q = NSum[-(2 + (-2)^n)*PrimeZetaP[n]/n, {n, 2, Infinity}, NSumTerms -> 2 digits, WorkingPrecision -> 3digits, Method -> "AlternatingSigns"]//Exp;
%t A273093 F3 = 1 - 18/Pi^2 + 3P - Q;
%t A273093 RealDigits[F3, 10, digits][[1]]
%o A273093 (PARI) 1 - 3/zeta(2) + 3 * prodeulerrat(1 - (2*p-1)/p^3) - prodeulerrat(1 - (3*p-2)/p^3) \\ _Amiram Eldar_, Mar 03 2021
%Y A273093 Cf. A065464, A065473, A229099.
%K A273093 nonn,cons
%O A273093 0,2
%A A273093 _Jean-François Alcover_, May 15 2016