cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273101 Numbers n such that n - 43, n - 1, n + 1, n + 43 are consecutive primes.

Original entry on oeis.org

7714800, 8126820, 8341260, 8646060, 9200880, 9422970, 13224270, 13597920, 14012460, 14124630, 15305700, 17008680, 17563920, 18830940, 22603740, 22812150, 24576240, 25197300, 26147040, 26196900, 26932950, 27225240, 30305580, 31214640
Offset: 1

Views

Author

Karl V. Keller, Jr., May 15 2016

Keywords

Comments

This sequence is a subsequence of A014574 (average of twin prime pairs), A249674 (divisible by 30) and A256753.
The numbers n - 43 and n + 1 belong to A272176 (p and p + 44 are primes) and A134120 (p such that p + 42 is the next prime).
The numbers n - 43 and n - 1 belong to A271982 (p and p + 42 are primes).

Examples

			7714800 is the average of the four consecutive primes 7714757, 7714799, 7714801, 7714843.
8126820 is the average of the four consecutive primes 8126777, 8126819, 8126821, 8126863.
		

Crossrefs

Cf. A014574, A077800 (twin primes), A249674, A256753.

Programs

  • PARI
    is(n)=n%30==0 && isprime(n-1) && isprime(n+1) && nextprime(n+2)==n+43 && precprime(n-2)==n-43 \\ Charles R Greathouse IV, May 15 2016
  • Python
    from sympy import isprime,prevprime,nextprime
    for i in range(0,60000001,6):
      if isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-43 and nextprime(i+1) == i+43: print (i,end=', ')