This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273102 #64 Feb 27 2020 09:20:50 %S A273102 1,1,2,1,1,3,2,1,2,4,1,2,1,1,5,4,1,2,3,6,1,1,3,0,2,2,1,7,6,1,2,4,8,1, %T A273102 2,4,1,2,1,1,3,9,2,6,4,1,2,5,10,1,3,5,2,2,0,1,11,10,1,2,3,4,6,12,1,1, %U A273102 1,2,6,0,0,1,4,0,1,3,1,2,1,1,13,12,1,2,7,14,1,5,7,4,2,-2,1,3,5,15,2,2,10,0,8,8 %N A273102 Difference table of the divisors of the positive integers. %C A273102 This is an irregular tetrahedron T(n,j,k) read by rows in which the slice n lists the elements of the rows of the difference triangle of the divisors of n (including the divisors of n). %C A273102 The first row of the slice n is also the n-th row of the triangle A027750. %C A273102 The bottom entry of the slice n is A187202(n). %C A273102 The sum of the elements of the slice n is A273103(n). %C A273102 For another version see A273104, from which differs at a(92). %C A273102 From _David A. Corneth_, May 20 2016: (Start) %C A273102 Each element of the difference table of the divisors of n can be expressed in terms of the divisors of n and use of Pascal's triangle. Suppose a, b, c, d and e are the divisors of n. Then the difference table is as follows (rotated for ease of reading): %C A273102 a %C A273102 . . b-a %C A273102 b . . . . c-2b+a %C A273102 . . c-b . . . . . d-3c+3b-a %C A273102 c . . . . d-2c+b . . . . . . e-4d+6c-4b+a %C A273102 . . d-c . . . . . e-3d+3c-b %C A273102 d . . . . e-2d+c %C A273102 . . e-d %C A273102 e %C A273102 From here we can see Pascal's triangle occurring. Induction can be used to show that it's the case in general. %C A273102 (End) %e A273102 For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, so the difference triangle of the divisors of 18 is %e A273102 1 . 2 . 3 . 6 . 9 . 18 %e A273102 1 . 1 . 3 . 3 . 9 %e A273102 0 . 2 . 0 . 6 %e A273102 2 .-2 . 6 %e A273102 -4 . 8 %e A273102 12 %e A273102 and the 18th slice is %e A273102 1, 2, 3, 6, 9, 18; %e A273102 1, 1, 3, 3, 9; %e A273102 0, 2, 0, 6; %e A273102 2,-2, 6; %e A273102 -4, 8; %e A273102 12; %e A273102 The tetrahedron begins: %e A273102 1; %e A273102 1, 2; %e A273102 1; %e A273102 1, 3; %e A273102 2; %e A273102 1, 2, 4; %e A273102 1, 2; %e A273102 1; %e A273102 ... %e A273102 This is also an irregular triangle T(n,r) read by rows in which row n lists the difference triangle of the divisors of n flattened. Row lengths are the terms of A184389. Row sums give A273103. %e A273102 Triangle begins: %e A273102 1; %e A273102 1, 2, 1; %e A273102 1, 3, 2; %e A273102 1, 2, 4, 1, 2, 1; %e A273102 ... %t A273102 Table[Drop[FixedPointList[Differences, Divisors@ n], -2], {n, 15}] // Flatten (* _Michael De Vlieger_, May 16 2016 *) %o A273102 (Sage) %o A273102 def A273102_DTD(n): # DTD = Difference Table of Divisors %o A273102 D = divisors(n) %o A273102 T = matrix(ZZ, len(D)) %o A273102 for (m, d) in enumerate(D): %o A273102 T[0, m] = d %o A273102 for k in range(m-1, -1, -1) : %o A273102 T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k] %o A273102 return [T.row(k)[:len(D)-k] for k in range(len(D))] %o A273102 # Keeps the rows of the DTD, for instance %o A273102 # A273102_DTD(18)[1] = 1,1,3,3,9 (see the example above). %o A273102 for n in range(1,19): print(A273102_DTD(n)) # _Peter Luschny_, May 18 2016 %Y A273102 Cf. A007182, A027750, A184389, A187202, A187204, A273103, A273104, A273109. %K A273102 sign,tabf %O A273102 1,3 %A A273102 _Omar E. Pol_, May 15 2016