This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273104 #27 Apr 02 2017 17:11:55 %S A273104 1,1,2,1,1,3,2,1,2,4,1,2,1,1,5,4,1,2,3,6,1,1,3,0,2,2,1,7,6,1,2,4,8,1, %T A273104 2,4,1,2,1,1,3,9,2,6,4,1,2,5,10,1,3,5,2,2,0,1,11,10,1,2,3,4,6,12,1,1, %U A273104 1,2,6,0,0,1,4,0,1,3,1,2,1,1,13,12,1,2,7,14,1,5,7,4,2,2,1,3,5,15,2,2,10,0,8,8 %N A273104 Absolute difference table of the divisors of the positive integers. %C A273104 This is an irregular tetrahedron T(n,j,k) read by rows in which the slice n lists the elements of the rows of the absolute difference triangle of the divisors of n (including the divisors of n). %C A273104 The first row of the slice n is also the n-th row of the triangle A027750. %C A273104 The bottom entry of the slice n is A187203(n). %C A273104 The sum of the elements of the slice n is A187215(n). %C A273104 For another version see A273102 from which differs at a(92). %e A273104 For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, so the absolute difference triangle of the divisors of 18 is %e A273104 1 . 2 . 3 . 6 . 9 . 18 %e A273104 . 1 . 1 . 3 . 3 . 9 %e A273104 . . 0 . 2 . 0 . 6 %e A273104 . . . 2 . 2 . 6 %e A273104 . . . . 0 . 4 %e A273104 . . . . . 4 %e A273104 and the 18th slice is %e A273104 1, 2, 3, 6, 9, 18; %e A273104 1, 1, 3, 3, 9; %e A273104 0, 2, 0, 6; %e A273104 2, 2, 6; %e A273104 0, 4; %e A273104 4; %e A273104 The tetrahedron begins: %e A273104 1; %e A273104 1, 2; %e A273104 1; %e A273104 1, 3; %e A273104 2; %e A273104 1, 2, 4; %e A273104 1, 2; %e A273104 1; %e A273104 ... %e A273104 This is also an irregular triangle T(n,r) read by rows in which row n lists the absolute difference triangle of the divisors of n flattened. %e A273104 Row lengths are the terms of A184389. Row sums give A187215. %e A273104 Triangle begins: %e A273104 1; %e A273104 1, 2, 1; %e A273104 1, 3, 2; %e A273104 1, 2, 4, 1, 2, 1; %e A273104 ... %t A273104 Table[Drop[FixedPointList[Abs@ Differences@ # &, Divisors@ n], -2], {n, 15}] // Flatten (* _Michael De Vlieger_, May 16 2016 *) %Y A273104 Cf. A027750, A184389, A187202-A187205, A187207-A187209, A187215, A273102. %K A273104 nonn,tabf %O A273104 1,3 %A A273104 _Omar E. Pol_, May 15 2016