cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273104 Absolute difference table of the divisors of the positive integers.

This page as a plain text file.
%I A273104 #27 Apr 02 2017 17:11:55
%S A273104 1,1,2,1,1,3,2,1,2,4,1,2,1,1,5,4,1,2,3,6,1,1,3,0,2,2,1,7,6,1,2,4,8,1,
%T A273104 2,4,1,2,1,1,3,9,2,6,4,1,2,5,10,1,3,5,2,2,0,1,11,10,1,2,3,4,6,12,1,1,
%U A273104 1,2,6,0,0,1,4,0,1,3,1,2,1,1,13,12,1,2,7,14,1,5,7,4,2,2,1,3,5,15,2,2,10,0,8,8
%N A273104 Absolute difference table of the divisors of the positive integers.
%C A273104 This is an irregular tetrahedron T(n,j,k) read by rows in which the slice n lists the elements of the rows of the absolute difference triangle of the divisors of n (including the divisors of n).
%C A273104 The first row of the slice n is also the n-th row of the triangle A027750.
%C A273104 The bottom entry of the slice n is A187203(n).
%C A273104 The sum of the elements of the slice n is A187215(n).
%C A273104 For another version see A273102 from which differs at a(92).
%e A273104 For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, so the absolute difference triangle of the divisors of 18 is
%e A273104 1 . 2 . 3 . 6 . 9 . 18
%e A273104 . 1 . 1 . 3 . 3 . 9
%e A273104 . . 0 . 2 . 0 . 6
%e A273104 . . . 2 . 2 . 6
%e A273104 . . . . 0 . 4
%e A273104 . . . . . 4
%e A273104 and the 18th slice is
%e A273104 1, 2, 3, 6, 9, 18;
%e A273104 1, 1, 3, 3, 9;
%e A273104 0, 2, 0, 6;
%e A273104 2, 2, 6;
%e A273104 0, 4;
%e A273104 4;
%e A273104 The tetrahedron begins:
%e A273104 1;
%e A273104 1, 2;
%e A273104 1;
%e A273104 1, 3;
%e A273104 2;
%e A273104 1, 2, 4;
%e A273104 1, 2;
%e A273104 1;
%e A273104 ...
%e A273104 This is also an irregular triangle T(n,r) read by rows in which row n lists the absolute difference triangle of the divisors of n flattened.
%e A273104 Row lengths are the terms of A184389. Row sums give A187215.
%e A273104 Triangle begins:
%e A273104 1;
%e A273104 1, 2, 1;
%e A273104 1, 3, 2;
%e A273104 1, 2, 4, 1, 2, 1;
%e A273104 ...
%t A273104 Table[Drop[FixedPointList[Abs@ Differences@ # &, Divisors@ n], -2], {n, 15}] // Flatten (* _Michael De Vlieger_, May 16 2016 *)
%Y A273104 Cf. A027750, A184389, A187202-A187205, A187207-A187209, A187215, A273102.
%K A273104 nonn,tabf
%O A273104 1,3
%A A273104 _Omar E. Pol_, May 15 2016