cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273107 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with (8*x+12*y)^2 + (15*z)^2 a square, where x,y,z,w are nonnegative integers with x+y > 0 and z > 0.

Original entry on oeis.org

0, 1, 2, 1, 0, 1, 1, 1, 1, 1, 3, 4, 2, 3, 2, 1, 2, 3, 3, 1, 2, 3, 1, 1, 1, 1, 4, 3, 3, 4, 1, 1, 5, 3, 2, 3, 3, 5, 2, 1, 2, 1, 3, 3, 3, 3, 2, 4, 5, 5, 2, 4, 5, 6, 1, 3, 7, 3, 5, 4, 2, 6, 4, 1, 5, 4, 5, 4, 7, 7, 4, 3, 5, 4, 5, 6, 2, 10, 3, 1
Offset: 1

Views

Author

Zhi-Wei Sun, May 15 2016

Keywords

Comments

Conjecture: a(n) > 0 for all n > 5, and a(n) = 1 only for n = 7, 9, 23, 25, 31, 55, 2^k*m (k = 1,2,... and m = 1, 5), 2^(2k+1)*m (k = 0,1,2,... and m = 3, 13, 21).
This conjecture implies that any integer n > 5 can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that 8*x+12*y and 15*z are the two legs of a right triangle with positive integer sides.
See also A271714, A273108, A273110 and A273134 for similar conjectures related to Pythagorean triples. For more conjectural refinements of Lagrange's four-square theorem, one may consult arXiv:1604.06723.

Examples

			a(2) = 1 since 2 = 1^2 + 0^2 + 1^2 + 0^2 with 1 + 0 > 0 < 1 and (8*1+12*0)^2 + (15*1)^2 = 17^2.
a(4) = 1 since 4 = 1^2 + 1^2 + 1^2 + 1^2 with 1 + 1 > 0 < 1 and (8*1+12*1)^2 + (15*1)^2 = 25^2.
a(6) = 1 since 6 = 1^2 + 0^2 + 1^2 + 2^2 with 1 + 0 > 0 < 1 and (8*1+12*0)^2 + (15*1)^2 = 17^2.
a(7) = 1 since 7 = 1^2 + 1^2 + 1^2 + 2^2 with 1 + 1 > 0 < 1 and (8*1+12*1)^2 + (15*1)^2 = 25^2.
a(9) = 1 since 9 = 2^2 + 0^2 + 2^2 + 1^2 with 2 + 0 > 0 < 2 and (8*2+12*0)^2 + (15*2)^2 = 34^2.
a(10) = 1 since 10 = 0^2 + 3^2 + 1^2 + 0^2 with 0 + 3 > 0 < 1 and (8*0+12*3)^2 + (15*1)^2 = 39^2.
a(20) = 1 since 20 = 3^2 + 1^2 + 1^2 + 3^2 with 3 + 1 > 0 < 1 and (8*3+12*1)^2 + (15*1)^2 = 39^2.
a(23) = 1 since 23 = 2^2 + 1^2 + 3^2 + 3^2 with 2 + 1 > 0 < 3 and (8*2+12*1)^2 + (15*3)^2 = 53^2.
a(25) = 1 since 25 = 1^2 + 2^2 + 4^2 + 2^2 with 1 + 2 > 0 < 4 and (8*1+12*2)^2 + (15*4)^2 = 68^2.
a(26) = 1 since 26 = 0^2 + 3^2 + 1^2 + 4^2 with 0 + 3 > 0 < 1 and (8*0+12*3)^2 + (15*1)^2 = 39^2.
a(31) = 1 since 31 = 3^2 + 3^2 + 3^2 + 2^2 with 3 + 3 > 0 < 3 and (8*3+12*3)^2 + (15*3)^2 = 75^2.
a(42) = 1 since 42 = 2^2 + 2^2 + 5^2 + 3^2 with 2 + 2 > 0 < 5 and (8*2+12*2)^2 + (15*5)^2 = 85^2.
a(55) = 1 since 55 = 6^2 + 1^2 + 3^2 + 3^2 with 6 + 1 > 0 < 3 and (8*6+12*1)^2 + (15*3)^2 = 75^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[(8x+12y)^2+(15z)^2],r=r+1],{x,0,Sqrt[n-1]},{y,Max[0,1-x],Sqrt[n-1-x^2]},{z,1,Sqrt[n-x^2-y^2]}];Print[n," ",r];Continue,{n,1,80}]