cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273130 Numbers which have only positive entries in the difference table of their divisors.

This page as a plain text file.
%I A273130 #22 Feb 24 2020 15:40:37
%S A273130 1,2,3,4,5,7,8,9,11,13,16,17,19,21,23,25,27,29,31,32,33,37,39,41,43,
%T A273130 47,49,51,53,55,57,59,61,64,65,67,69,71,73,79,81,83,85,87,89,93,95,97,
%U A273130 101,103,107,109,111,113,115,119,121,123,125,127,128,129,131,133
%N A273130 Numbers which have only positive entries in the difference table of their divisors.
%C A273130 Primes and powers of primes are in the sequence.
%H A273130 Charles R Greathouse IV, <a href="/A273130/b273130.txt">Table of n, a(n) for n = 1..10000</a>
%e A273130 85 is in the sequence because the difference table of the divisors of 85 has only entries greater than 0:
%e A273130 [1, 5, 17, 85]
%e A273130 [4, 12, 68]
%e A273130 [8, 56]
%e A273130 [48]
%t A273130 Select[Range@ 1000, {} == NestWhile[ Differences, Divisors @ #, # != {} && Min[#] > 0 &] &] (* _Giovanni Resta_, May 16 2016 *)
%o A273130 (Sage)
%o A273130 def sf(z):
%o A273130     D = divisors(z)
%o A273130     T = matrix(ZZ, len(D))
%o A273130     for m, d in enumerate(D):
%o A273130         T[0, m] = d
%o A273130         for k in range(m-1, -1, -1) :
%o A273130             T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
%o A273130             if T[m-k, k] <= 0: return False
%o A273130     return True
%o A273130 print([z for z in range(1,100) if sf(z)])
%o A273130 (PARI) has(v)=if(#v<2, v[1]>0, if(vecmin(v)<1, 0, has(vector(#v-1,i,v[i+1]-v[i]))))
%o A273130 is(n)=has(divisors(n)) \\ _Charles R Greathouse IV_, May 16 2016
%Y A273130 Cf. A014567, A187202, A273102, A273103, A273109, A273157 (complement).
%K A273130 nonn
%O A273130 1,2
%A A273130 _Peter Luschny_, May 16 2016