This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273130 #22 Feb 24 2020 15:40:37 %S A273130 1,2,3,4,5,7,8,9,11,13,16,17,19,21,23,25,27,29,31,32,33,37,39,41,43, %T A273130 47,49,51,53,55,57,59,61,64,65,67,69,71,73,79,81,83,85,87,89,93,95,97, %U A273130 101,103,107,109,111,113,115,119,121,123,125,127,128,129,131,133 %N A273130 Numbers which have only positive entries in the difference table of their divisors. %C A273130 Primes and powers of primes are in the sequence. %H A273130 Charles R Greathouse IV, <a href="/A273130/b273130.txt">Table of n, a(n) for n = 1..10000</a> %e A273130 85 is in the sequence because the difference table of the divisors of 85 has only entries greater than 0: %e A273130 [1, 5, 17, 85] %e A273130 [4, 12, 68] %e A273130 [8, 56] %e A273130 [48] %t A273130 Select[Range@ 1000, {} == NestWhile[ Differences, Divisors @ #, # != {} && Min[#] > 0 &] &] (* _Giovanni Resta_, May 16 2016 *) %o A273130 (Sage) %o A273130 def sf(z): %o A273130 D = divisors(z) %o A273130 T = matrix(ZZ, len(D)) %o A273130 for m, d in enumerate(D): %o A273130 T[0, m] = d %o A273130 for k in range(m-1, -1, -1) : %o A273130 T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k] %o A273130 if T[m-k, k] <= 0: return False %o A273130 return True %o A273130 print([z for z in range(1,100) if sf(z)]) %o A273130 (PARI) has(v)=if(#v<2, v[1]>0, if(vecmin(v)<1, 0, has(vector(#v-1,i,v[i+1]-v[i])))) %o A273130 is(n)=has(divisors(n)) \\ _Charles R Greathouse IV_, May 16 2016 %Y A273130 Cf. A014567, A187202, A273102, A273103, A273109, A273157 (complement). %K A273130 nonn %O A273130 1,2 %A A273130 _Peter Luschny_, May 16 2016