A273132 Absolute difference table of the divisors of the positive integers (with every table read by antidiagonals upwards).
1, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 4, 1, 4, 5, 1, 1, 2, 0, 1, 3, 2, 2, 3, 6, 1, 6, 7, 1, 1, 2, 1, 2, 4, 1, 2, 4, 8, 1, 2, 3, 4, 6, 9, 1, 1, 2, 2, 3, 5, 0, 2, 5, 10, 1, 10, 11, 1, 1, 2, 0, 1, 3, 0, 0, 1, 4, 1, 1, 1, 2, 6, 1, 2, 3, 4, 6, 12, 1, 12, 13, 1, 1, 2, 4, 5, 7, 2, 2, 7, 14, 1, 2, 3, 0, 2, 5, 8, 8, 10, 15
Offset: 1
Examples
The tables of the first nine positive integers are 1; 1, 2; 1, 3; 1, 2, 4; 1, 5; 1, 2, 3, 6; 1, 7; 1, 2, 4, 8; 1, 3, 9; 1; 2; 1, 2; 4; 1, 1, 3; 6; 1, 2, 4; 2, 6; 1; 0, 2; 1, 2; 4; 2; 1; For n = 18 the absolute difference table of the divisors of 18 is 1, 2, 3, 6, 9, 18; 1, 1, 3, 3, 9; 0, 2, 0, 6; 2, 2, 6; 0, 4; 4; This table read by antidiagonals upwards gives the finite subsequence [1], [1, 2], [0, 1, 3], [2, 2, 3, 6], [0, 2, 0, 3, 9], [4, 4, 6, 6, 9, 18].
Programs
-
Mathematica
Table[Table[#[[m - k + 1, k]], {m, Length@ #}, {k, m}] &@ NestWhileList[Abs@ Differences@ # &, Divisors@ n, Length@ # > 1 &], {n, 15}] // Flatten (* Michael De Vlieger, Jun 26 2016 *)
Comments