cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273135 Difference table of the divisors of the positive integers (with every table read by antidiagonals downwards).

This page as a plain text file.
%I A273135 #36 May 01 2025 08:29:17
%S A273135 1,1,2,1,1,3,2,1,2,1,4,2,1,1,5,4,1,2,1,3,1,0,6,3,2,2,1,7,6,1,2,1,4,2,
%T A273135 1,8,4,2,1,1,3,2,9,6,4,1,2,1,5,3,2,10,5,2,0,1,11,10,1,2,1,3,1,0,4,1,0,
%U A273135 0,6,2,1,1,1,12,6,4,3,2,1,1,13,12,1,2,1,7,5,4,14,7,2,-2,1,3,2,5,2,0,15,10,8,8
%N A273135 Difference table of the divisors of the positive integers (with every table read by antidiagonals downwards).
%C A273135 This is an irregular tetrahedron T(n,j,k) in which the slice n lists the elements of the j-th antidiagonal of the difference triangle of the divisors of n.
%C A273135 The first row of the slice n is also the n-th row of the triangle A027750.
%C A273135 The bottom entry of the slice n is A187202(n).
%C A273135 The number of elements in the n-th slice is A000217(A000005(n)) = A184389(n).
%C A273135 The sum of the elements of the n-th slice is A273103(n).
%C A273135 The antidiagonal sums give A273262.
%C A273135 If n is a power of 2 the antidiagonals are also the divisors of the powers of 2 from 1 to n in decreasing order, for example if n = 8 the finite sequence of antidiagonals is [1], [2, 1], [4, 2, 1], [8, 4, 2, 1].
%C A273135 First differs from A272121 at a(92).
%e A273135 The tables of the first nine positive integers are
%e A273135   1; 1, 2; 1, 3; 1, 2, 4; 1, 5; 1, 2, 3, 6; 1, 7; 1, 2, 4, 8; 1, 3, 9;
%e A273135      1;    2;    1, 2;    4;    1, 1, 3;    6;    1, 2, 4;    2, 6;
%e A273135                  1;             0, 2;             1, 2;       4;
%e A273135                                 2;                1;
%e A273135 For n = 18 the difference table of the divisors of 18 is
%e A273135   1,  2, 3, 6, 9, 18;
%e A273135   1,  1, 3, 3, 9;
%e A273135   0,  2, 0, 6;
%e A273135   2, -2, 6;
%e A273135  -4,  8;
%e A273135  12;
%e A273135 This table read by antidiagonals downwards gives the finite subsequence [1], [2, 1], [3, 1, 0], [6, 3, 2, 2], [9, 3, 0, -2, -4], [18, 9, 6, 6, 8, 12].
%t A273135 Table[Table[#[[m - k + 1, k]], {m, Length@ #}, {k, m, 1, -1}] &@ NestWhileList[Differences, Divisors@ n, Length@ # > 1 &], {n, 15}] // Flatten (* _Michael De Vlieger_, Jun 26 2016 *)
%Y A273135 Cf. A000005, A000217, A027750, A161700, A184389, A187202, A272210, A272121, A273102, A273103, A273262.
%K A273135 sign,tabf
%O A273135 1,3
%A A273135 _Omar E. Pol_, May 18 2016