cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273137 Absolute difference table of the divisors of the positive integers (with every table read by columns).

This page as a plain text file.
%I A273137 #15 Jun 29 2016 00:03:09
%S A273137 1,1,1,2,1,2,3,1,1,1,2,2,4,1,4,5,1,1,0,2,2,1,2,3,3,6,1,6,7,1,1,1,1,2,
%T A273137 2,2,4,4,8,1,2,4,3,6,9,1,1,2,0,2,3,2,5,5,10,1,10,11,1,1,0,0,1,1,2,1,0,
%U A273137 1,2,3,1,1,3,4,2,4,6,6,12,1,12,13,1,1,4,2,2,5,2,7,7,14,1,2,0,8,3,2,8,5,10,15
%N A273137 Absolute difference table of the divisors of the positive integers (with every table read by columns).
%C A273137 This is an irregular tetrahedron in which T(n,j,k) is the k-th element of the j-th column of the absolute difference table of the divisors of n.
%C A273137 The first row of the slice n is also the n-th row of the triangle A027750.
%C A273137 The bottom entry of the slice n is A187203(n).
%C A273137 The number of elements in the n-th slice is A000217(A000005(n)) = A184389(n).
%C A273137 The sum of the elements of the n-th slice is A187215(n).
%C A273137 If n is a power of 2 the subsequence lists the elements of the absolute difference table of the divisors of n in nondecreasing order, for example if n = 8 the finite sequence of columns is [1, 1, 1, 1], [2, 2, 2], [4, 4], [8].
%C A273137 Note that this sequence is not the absolute values of A273136.
%C A273137 First differs from A273136 at a(86).
%e A273137 The tables of the first nine positive integers are
%e A273137 1; 1, 2; 1, 3; 1, 2, 4; 1, 5; 1, 2, 3, 6; 1, 7; 1, 2, 4, 8; 1, 3, 9;
%e A273137 .  1;    2;    1, 2;    4;    1, 1, 3;    6;    1, 2, 4;    2, 6;
%e A273137 .              1;             0, 2;             1, 2;       4;
%e A273137 .                             2;                1;
%e A273137 .
%e A273137 For n = 18 the absolute difference table of the divisors of 18 is
%e A273137 1, 2, 3, 6, 9, 18;
%e A273137 1, 1, 3, 3, 9;
%e A273137 0, 2, 0, 6;
%e A273137 2, 2, 6;
%e A273137 0, 4;
%e A273137 4;
%e A273137 This table read by columns gives the finite subsequence [1, 1, 0, 2, 0, 4], [2, 1, 2, 2, 4], [3, 3, 0, 6], [6, 3, 6], [9, 9], [18].
%t A273137 Table[Transpose@ Map[Function[w, PadRight[w, Length@ #]], NestWhileList[Abs@ Differences@ # &, #, Length@ # > 1 &]] &@ Divisors@ n, {n, 15}] /. 0 -> {} // Flatten (* _Michael De Vlieger_, Jun 26 2016 *)
%Y A273137 Cf. A000005, A000217, A027750, A184389, A187203, A187215, A272121, A273132, A273136.
%K A273137 nonn,tabf
%O A273137 1,4
%A A273137 _Omar E. Pol_, Jun 26 2016