A273156 Product of all parts in Zeckendorf representation of n.
0, 1, 2, 3, 3, 5, 5, 10, 8, 8, 16, 24, 24, 13, 13, 26, 39, 39, 65, 65, 130, 21, 21, 42, 63, 63, 105, 105, 210, 168, 168, 336, 504, 504, 34, 34, 68, 102, 102, 170, 170, 340, 272, 272, 544, 816, 816, 442, 442, 884, 1326, 1326, 2210, 2210, 4420, 55, 55, 110, 165
Offset: 0
Examples
a(33) = 21*8*3*1 because 33 = 21+8+3+1.
Links
- Peter Kagey, Table of n, a(n) for n = 0..10000
- StackExchange user "orlp", Fibonacci products.
Programs
-
Haskell
a273156 = product . a035516_row
-
Maple
A273156 := proc(n) local nred,a,f ; if n = 0 then 0; else nred := n ; a := 1 ; while nred > 1 do f := A087172(nred) ; a := a*f ; nred := nred-f ; end do: a ; end if; end proc: # R. J. Mathar, May 17 2016
-
Mathematica
t = Fibonacci /@ Range@ 21; {0}~Join~Table[Times @@ If[MemberQ[t, n], {n}, Most@ MapAt[# + 1 &, Abs@ Differences@ FixedPointList[# - First@ Reverse@ TakeWhile[t, Function[k, # >= k]] &, n], -1]], {n, 58}] (* Michael De Vlieger, May 17 2016 *) a[0]=0; a[n_]:=Block[{m=n, p=1, f, k=0}, While[Fibonacci@ ++k <= n]; While[ m>1, f= Fibonacci@ --k; If[ f<=m, m-=f; p*=f]]; p]; Array[a, 80, 0] (* Giovanni Resta, May 17 2016 *)