This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273157 #19 Feb 27 2020 11:51:56 %S A273157 6,10,12,14,15,18,20,22,24,26,28,30,34,35,36,38,40,42,44,45,46,48,50, %T A273157 52,54,56,58,60,62,63,66,68,70,72,74,75,76,77,78,80,82,84,86,88,90,91, %U A273157 92,94,96,98,99,100,102,104,105,106,108,110,112,114,116,117 %N A273157 Numbers which have nonpositive entries in the difference table of their divisors (complement of A273130). %C A273157 Primorial numbers (A002110) greater than 2 are in this sequence. %e A273157 30 is in this sequence because the difference table of the divisors of 30 is: %e A273157 [1, 2, 3, 5, 6, 10, 15, 30] %e A273157 [1, 1, 2, 1, 4, 5, 15] %e A273157 [0, 1, -1, 3, 1, 10] %e A273157 [1, -2, 4, -2, 9] %e A273157 [-3, 6, -6, 11] %e A273157 [9, -12, 17] %e A273157 [-21, 29] %e A273157 [50] %o A273157 (Sage) %o A273157 def nsf(z): %o A273157 D = divisors(z) %o A273157 T = matrix(ZZ, len(D)) %o A273157 for m, d in enumerate(D): %o A273157 T[0, m] = d %o A273157 for k in range(m-1, -1, -1) : %o A273157 T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k] %o A273157 if T[m-k, k] <= 0: return True %o A273157 return False %o A273157 print([n for n in range(1, 100) if nsf(n)]) %Y A273157 Cf. A069059, A187202, A273102, A273103, A273109, A273130 (complement). %K A273157 nonn %O A273157 1,1 %A A273157 _Peter Luschny_, May 16 2016