cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273157 Numbers which have nonpositive entries in the difference table of their divisors (complement of A273130).

This page as a plain text file.
%I A273157 #19 Feb 27 2020 11:51:56
%S A273157 6,10,12,14,15,18,20,22,24,26,28,30,34,35,36,38,40,42,44,45,46,48,50,
%T A273157 52,54,56,58,60,62,63,66,68,70,72,74,75,76,77,78,80,82,84,86,88,90,91,
%U A273157 92,94,96,98,99,100,102,104,105,106,108,110,112,114,116,117
%N A273157 Numbers which have nonpositive entries in the difference table of their divisors (complement of A273130).
%C A273157 Primorial numbers (A002110) greater than 2 are in this sequence.
%e A273157 30 is in this sequence because the difference table of the divisors of 30 is:
%e A273157 [1, 2, 3, 5, 6, 10, 15, 30]
%e A273157 [1, 1, 2, 1, 4, 5, 15]
%e A273157 [0, 1, -1, 3, 1, 10]
%e A273157 [1, -2, 4, -2, 9]
%e A273157 [-3, 6, -6, 11]
%e A273157 [9, -12, 17]
%e A273157 [-21, 29]
%e A273157 [50]
%o A273157 (Sage)
%o A273157 def nsf(z):
%o A273157     D = divisors(z)
%o A273157     T = matrix(ZZ, len(D))
%o A273157     for m, d in enumerate(D):
%o A273157         T[0, m] = d
%o A273157         for k in range(m-1, -1, -1) :
%o A273157             T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
%o A273157             if T[m-k, k] <= 0: return True
%o A273157     return False
%o A273157 print([n for n in range(1, 100) if nsf(n)])
%Y A273157 Cf. A069059, A187202, A273102, A273103, A273109, A273130 (complement).
%K A273157 nonn
%O A273157 1,1
%A A273157 _Peter Luschny_, May 16 2016