cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273164 Irregular array read by rows: T(n, k) giving in row n the divisors of nonprime numbers that are 3 (mod 4).

This page as a plain text file.
%I A273164 #25 Aug 03 2016 09:01:49
%S A273164 1,3,5,15,1,3,9,27,1,5,7,35,1,3,13,39,1,3,17,51,1,5,11,55,1,3,7,9,21,
%T A273164 63,1,3,5,15,25,75,1,3,29,87,1,7,13,91,1,5,19,95,1,3,9,11,33,99,1,3,
%U A273164 37,111,1,5,23,115,1,7,17,119,1,3,41,123,1,3,5,9,15,27,45,135,1,11,13,143,1,3,7,21,49,147,1,5,31,155
%N A273164 Irregular array read by rows: T(n, k) giving in row n the divisors of nonprime numbers that are 3 (mod 4).
%C A273164 The length of row n is 2*A273165(n).
%C A273164 The number of divisors 1 and -1 (mod 4) in each row are identical, namely A273165(n). See the Jan 05 2004 Jovovic comment on A078703. For prime numbers 3 (mod 4) this is obvious. For the proof see a comment on A091236 with the Grosswald reference.
%C A273164 From _Paul Curtz_, Jul 31 2016: (Start)
%C A273164 For each row n of length 2*r(n) one has:
%C A273164 T(n, m)*T(n, 2*r(n)-m+1) = T(n, 2*r(n)),for m=1, 2, ... , r(n).
%C A273164 From the second comment it follows that the row sums are congruent to 0 modulo 4. (End)
%F A273164 T(n, k) gives the k-th divisor of A091236(n) in increasing order.
%e A273164 The irregular array T(n, k) begins:
%e A273164 n\k 1  2  3   4  5   6  7   8 ...
%e A273164 1:  1  3  5  15
%e A273164 2:  1  3  9  27
%e A273164 3:  1  5  7  35
%e A273164 4:  1  3 13  39
%e A273164 5:  1  3 17  51
%e A273164 6:  1  5 11  55
%e A273164 7:  1  3  7   9 21  63
%e A273164 8:  1  3  5  15 25  75
%e A273164 9:  1  3 29  87
%e A273164 10: 1  7 13  91
%e A273164 11: 1  5 19  95
%e A273164 12: 1  3  9  11 33  99
%e A273164 13: 1  3 37 111
%e A273164 14: 1  5 23 115
%e A273164 15: 1  7 17 119
%e A273164 16: 1  3 41 123
%e A273164 17: 1  3  5   9 15  27 45 135
%e A273164 18: 1 11 13 143
%e A273164 19: 1  3  7  21 49 147
%e A273164 20: 1 5 31 155
%e A273164 ...
%e A273164 The irregular array modulo 4 gives (-1 for 3 (mod 4)):
%e A273164 n\k 1  2  3   4  5   6  7   8 ...
%e A273164 1:  1  -1  1  -1
%e A273164 2:  1  -1  1  -1
%e A273164 3:  1   1 -1  -1
%e A273164 4:  1  -1  1  -1
%e A273164 5:  1  -1  1  -1
%e A273164 6:  1   1 -1  -1
%e A273164 7:  1  -1  1  -1  1  -1
%e A273164 8:  1  -1  1  -1  1  -1
%e A273164 9:  1  -1  1  -1
%e A273164 10: 1  -1  1  -1
%e A273164 11: 1   1 -1  -1
%e A273164 12: 1  -1  1  -1  1  -1
%e A273164 13: 1  -1  1  -1
%e A273164 14: 1   1 -1  -1
%e A273164 15: 1  -1  1  -1
%e A273164 16: 1  -1  1  -1
%e A273164 17: 1  -1  1   1  -1  -1  1 -1
%e A273164 18: 1  -1  1  -1
%e A273164 19: 1  -1 -1   1   1  -1
%e A273164 20: 1   1 -1  -1
%e A273164 ...
%t A273164 Divisors@ Select[Range@ 155, CompositeQ@ # && Mod[#, 4] == 3 &] // Flatten (* _Michael De Vlieger_, Aug 01 2016 *)
%Y A273164 Cf. A004767, A078703, A091236, A273165.
%K A273164 nonn,easy,tabf
%O A273164 1,2
%A A273164 _Wolfdieter Lang_, Jul 29 2016