This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273168 #12 Jun 23 2016 00:03:03 %S A273168 1,2,2,8,2,8,16,32,16,32,128,16,32,16,128,256,256,64,512,256,512,1024, %T A273168 256,2048,512,1024,512,2048,2048,8192,4096,8192,2048,8192,4096,8192, %U A273168 32768,2048,4096,2048,8192,2048,4096,2048,32768,65536,65536,8192,32768,16384,32768,8192,131072,65536,131072,262144,65536,262144,32768,65536,32768,524288,131072,262144,131072,524288 %N A273168 Denominators of coefficient triangle for expansion of x^(2*n) in terms of Chebyshev polynomials of the first kind T(2*m, x) (A127674). %C A273168 The numerator sequence is given in A273167, where details are given. %H A273168 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %F A273168 a(n, m) = denominator(R(n, m)), n >= 0, m = 1, ..., n, with the rationals R(n, m) given by R(n, 0) = (1/2^(2*n-1)) * binomial(2*n,n)/2 and R(n ,m) = (1/2^(2*n-1))*binomial(2*n, n-m) for m =1..n, n >= 0. %e A273168 The triangle a(n, m) begins: %e A273168 n\m 0 1 2 3 4 5 6 7 %e A273168 0: 1 %e A273168 1: 2 2 %e A273168 2: 8 2 8 %e A273168 3: 16 32 16 32 %e A273168 4: 128 16 32 16 128 %e A273168 5: 256 256 64 512 256 512 %e A273168 6: 1024 256 2048 512 1024 512 2048 %e A273168 7: 2048 8192 4096 8192 2048 8192 4096 8192 %e A273168 ... %e A273168 row 8: 32768 2048 4096 2048 8192 2048 4096 2048 32768, %e A273168 row 9: 65536 65536 8192 32768 16384 32768 8192 131072 65536 131072, %e A273168 ... %o A273168 (PARI) a(n, m) = if (m == 0, denominator((1/2^(2*n-1)) * binomial(2*n,n)/2), denominator((1/2^(2*n-1))*binomial(2*n, n-m))); %o A273168 tabl(nn) = for (n=0, nn, for (k=0, n, print1(a(n,k), ", ")); print()); \\ _Michel Marcus_, Jun 19 2016 %Y A273168 Cf. A273167. %K A273168 nonn,tabl,frac,easy %O A273168 0,2 %A A273168 _Wolfdieter Lang_, Jun 12 2016