cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273169 Numerators of coefficient triangle for integrated even powers of cos(x) in terms of x and sin(2*m*x).

This page as a plain text file.
%I A273169 #22 Nov 18 2024 22:31:55
%S A273169 1,1,1,3,1,1,5,15,3,1,35,7,7,1,1,63,105,15,15,5,1,231,99,495,55,33,3,
%T A273169 1,429,3003,1001,1001,91,91,7,1,6435,715,1001,91,455,7,5,1,1,12155,
%U A273169 21879,1989,1547,1071,153,17,153,9,1,46189,20995,62985,1615,4845,969,1615,285,95,5,1
%N A273169 Numerators of coefficient triangle for integrated even powers of cos(x) in terms of x and sin(2*m*x).
%C A273169 The denominator triangle is given in A273170.
%C A273169 Int(cos^(2*n)(x), x) = R(n, 0)*x + Sum_{m = 1..n} R(n, m)*sin(2*m*x), n >= 0, with the rational triangle a(n, m)/A273170(n, m).
%C A273169 For the rational triangle for the even powers of cos see A273167/A273168. See also the even-indexed rows of A273496.
%C A273169 For the integral over odd powers of cos see the rational triangle A273171/A273172.
%C A273169 The signed triangle S(n, m) = R(n, m)*(-1)^m appears in the integral of even powers of sin as Int(sin^(2*n)(x), x) = S(n , 0)*x + Sum_{m = 1..n} S(n, m)*sin(2*m*x), n >= 0.
%D A273169 I. S. Gradstein and I. M. Ryshik, Tables of series, products, and integrals, Volume 1, Verlag Harri Deutsch, 1981, pp. 168-169, 2.513 1. and 3.
%F A273169 a(n, m) = numerator(R(n, m)) with the rationals R(n, m) defined by R(n, 0) = (1/2^(2*n))*binomial(2*n,n) and R(n, m) = (1/2^(2*n))*binomial(2*n, n-m)/m for m = 1, ..., n, n >= 0. See the Gradstein-Ryshik reference (where the sin arguments are falling).
%e A273169 The triangle a(n, m) begins:
%e A273169 n\m    0     1    2    3    4   5  6   7 8 9
%e A273169 0:     1
%e A273169 1:     1     1
%e A273169 2:     3     1    1
%e A273169 3:     5    15    3    1
%e A273169 4:    35     7    7    1    1
%e A273169 5:    63   105   15   15    5   1
%e A273169 6:   231    99  495   55   33   3  1
%e A273169 7:   429  3003 1001 1001   91  91  7   1
%e A273169 8:  6435   715 1001   91  455   7  5   1 1
%e A273169 9: 12155 21879 1989 1547 1071 153 17 153 9 1
%e A273169 ...
%e A273169 row 10: 46189 20995 62985 1615 4845 969 1615 285 95 5 1,
%e A273169 ...
%e A273169 The rational triangle R(n, m) begins:
%e A273169 n\m   0      1     2      3      4     ...
%e A273169 0:   1/1
%e A273169 1:   1/2    1/4
%e A273169 2:   3/8    1/4   1/32
%e A273169 3:   5/16  15/64  3/64   1/192
%e A273169 4:  35/128  7/32  7/128  1/96  1/1024
%e A273169 ...
%e A273169 row 5: 63/256 105/512 15/256 15/1024 5/2048 1/5120,
%e A273169 row 6: 231/1024 99/512 495/8192 55/3072 33/8192 3/5120 1/24576,
%e A273169 row 7: 429/2048 3003/16384 1001/16384 1001/49152 91/16384 91/81920 7/49152 1/114688,
%e A273169 row 8: 6435/32768 715/4096 1001/16384 91/4096 455/65536 7/4096 5/16384 1/28672 1/524288,
%e A273169 row 9: 12155/65536 21879/131072 1989/32768 1547/65536 1071/131072 153/65536 17/32768 153/1835008 9/1048576 1/2359296,
%e A273169 row 10: 46189/262144 20995/131072 62985/1048576 1615/65536 4845/524288 969/327680 1615/2097152 285/1835008 95/4194304 5/2359296 1/10485760,
%e A273169 ...
%e A273169 n = 3: Int(cos^6(x), x) = (5/16)*x + (15/64)*sin(2*x) + (3/64)*sin(4*x) + (1/192)*sin(6*x).
%e A273169   Int(sin^6(x), x) = (5/16)*x - (15/64)*sin(2*x) + (3/64)*sin(4*x) - (1/192)*sin(6*x).
%t A273169 T[MaxN_] := Function[{n}, With[{exp = Expand[(1/2)^(2 n) (Exp[I x] + Exp[-I x])^(2 n)]}, Prepend[1/# Coefficient[exp, Exp[I 2 # x]] & /@ Range[1, n], exp /. {Exp[_] -> 0}]]][#] & /@ Range[0, MaxN];
%t A273169 T[5] // ColumnForm (* _Bradley Klee_, Jun 14 2016 *)
%o A273169 (PARI) a(n, m) = if (m == 0, numerator((1/2^(2*n))*binomial(2*n,n)), numerator((1/2^(2*n))*binomial(2*n, n-m)/m));
%o A273169 tabl(nn) = for (n=0, nn, for (k=0, n, print1(a(n,k), ", ")); print()); \\ _Michel Marcus_, Jun 19 2016
%Y A273169 Cf. A273170, A273167, A273168, A273496, A273171, A273172.
%K A273169 nonn,tabl,frac,easy
%O A273169 0,4
%A A273169 _Wolfdieter Lang_, Jun 13 2016