cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273170 Denominators of coefficient triangle for integrated even powers of cos(x) in terms of x and sin(2*m*x).

This page as a plain text file.
%I A273170 #11 Nov 18 2024 22:31:50
%S A273170 1,2,4,8,4,32,16,64,64,192,128,32,128,96,1024,256,512,256,1024,2048,
%T A273170 5120,1024,512,8192,3072,8192,5120,24576,2048,16384,16384,49152,16384,
%U A273170 81920,49152,114688,32768,4096,16384,4096,65536,4096,16384,28672,524288,65536,131072,32768,65536,131072,65536,32768,1835008,1048576,2359296,262144,131072,1048576,65536,524288,327680,2097152,1835008,4194304,2359296,10485760
%N A273170 Denominators of coefficient triangle for integrated even powers of cos(x) in terms of x and sin(2*m*x).
%C A273170 See the numerator triangle A273169, also for the formula of int(cos^(2*n)(x), x) in terms of x and sin(2*m*x).
%F A273170 a(n, m) = denominator(R(n, m)) with the rationals R(n, m) defined by R(n, 0) = (1/2^(2*n))*binomial(2*n,n) and R(n, m) = (1/2^(2*n))*binomial(2*n, n-m)/m for m = 1, ..., n, n >= 0. See the Gradstein-Ryshik reference given in A273169 (where the sin arguments are falling).
%e A273170 See A273169, also for the rationals R(n,m).
%e A273170 The triangle a(n, m) begins:
%e A273170 n\m    0   1    2    3    4    5     6 ...
%e A273170 0:     1
%e A273170 1:     2   4
%e A273170 2:     8   4   32
%e A273170 3:    16  64   64  192
%e A273170 4:   128  32  128   96 1024
%e A273170 5:   256 512  256 1024 2048 5120
%e A273170 6:  1024 512 8192 3072 8192 5120 24576
%e A273170 ...
%e A273170 row 7: 2048 16384 16384 49152 16384 81920 49152 114688,
%e A273170 row 8: 32768 4096 16384 4096 65536 4096 16384 28672 524288,
%e A273170 row 9: 65536 131072 32768 65536 131072 65536 32768 1835008 1048576 2359296,
%e A273170 row 10: 262144 131072 1048576 65536 524288 327680 2097152 1835008 4194304 2359296 10485760,
%e A273170 ...
%o A273170 (PARI) a(n, m) = if (m == 0, denominator((1/2^(2*n))*binomial(2*n,n)), denominator((1/2^(2*n))*binomial(2*n, n-m)/m));
%o A273170 tabl(nn) = for (n=0, nn, for (k=0, n, print1(a(n,k), ", ")); print()); \\ _Michel Marcus_, Jun 19 2016
%Y A273170 Cf. A273169.
%K A273170 nonn,tabl,frac,easy
%O A273170 0,2
%A A273170 _Wolfdieter Lang_, Jun 13 2016