This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273172 #10 Jun 23 2016 06:56:49 %S A273172 1,4,12,8,48,80,64,64,320,448,128,64,320,1792,2304,512,512,1024,7168, %T A273172 9216,11264,1024,4096,4096,14336,6144,45056,53248,16384,49152,81920, %U A273172 16384,147456,180224,212992,245760,32768,24576,40960,16384,147456,90112,106496,983040,1114112,131072,131072,327680,65536,65536,720896,3407872,1310720,4456448,4980736,262144,1572864,524288,917504,393216,11534336,13631488,1572864,8912896,19922944,22020096 %N A273172 Triangle for denominators of coefficients for integrated odd powers of cos(x) in terms sin((2*m+1)*x). %C A273172 For the numerator triangle see A273171, also for the cos^(2*n+1) formula, and the Gradstein-Ryshik reference. %F A273172 a(n, m) = denominator(R(n, m)) with the rationals R(n, m) = (1/2^(2*n))* binomial(2*n+1, n-m) / (2*m+1) for m = 0, ..., n, n >= 0. See the Gradstein-Ryshik reference given in A273171 (where the sin arguments are falling). %e A273172 The triangle a(n, m) begins: %e A273172 n\m 0 1 2 3 4 5 6 ... %e A273172 0: 1 %e A273172 1: 4 12 %e A273172 2: 8 48 80 %e A273172 3: 64 64 320 448 %e A273172 4: 128 64 320 1792 2304 %e A273172 5: 512 512 1024 7168 9216 11264 %e A273172 6: 1024 4096 4096 14336 6144 45056 53248 %e A273172 ... %e A273172 row 7: 16384 49152 81920 16384 147456 180224 212992 245760, %e A273172 row 8: 32768 24576 40960 16384 147456 90112 106496 983040 1114112, %e A273172 row 9: 131072 131072 327680 65536 65536 720896 3407872 1310720 4456448 4980736, %e A273172 row 10: 262144 1572864 524288 917504 393216 11534336 13631488 1572864 8912896 19922944 22020096,... %e A273172 For the head of the rational triangle see A273171. %o A273172 (PARI) a(n, m) = denominator((1/2^(2*n))*binomial(2*n+1, n-m)/(2*m+1)); %o A273172 tabl(nn) = for (n=0, nn, for (k=0, n, print1(a(n,k), ", ")); print()); \\ _Michel Marcus_, Jun 19 2016 %Y A273172 Cf. A273171. %K A273172 nonn,tabl,frac,easy %O A273172 0,2 %A A273172 _Wolfdieter Lang_, Jun 13 2016