A273185 Start with a(0) = 0. Thereafter a(n) is the number of m < n with the property that a(m) + n is a perfect square.
0, 1, 0, 1, 2, 0, 0, 1, 3, 4, 0, 0, 1, 1, 1, 6, 6, 0, 0, 2, 0, 1, 1, 2, 8, 9, 0, 1, 1, 0, 2, 0, 1, 1, 4, 12, 12, 2, 0, 0, 1, 1, 0, 2, 0, 2, 1, 7, 15, 17, 0, 0, 2, 0, 0, 1, 1, 1, 2, 0, 2, 1, 10, 19, 22, 0, 1, 0, 0, 2, 0, 1, 1, 1, 1, 2, 0, 2, 2, 14
Offset: 0
Examples
a(3) = 1 because 3 + a(1) is a perfect square. a(4) = 2 because 4 + a(0) and 4 + a(2) are perfect squares.
Links
- Peter Kagey, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A273190.
Programs
-
Java
int n = 1000; int[] terms = new int[n]; for (int i = 0; i < n; i++) { for (int j = 0; j < i; j++) { if (Math.sqrt(i+terms[j]) == Math.floor(Math.sqrt(i+terms[j]))) { terms[i]++; } } System.out.print(terms[i] + ", "); }
-
Mathematica
a = {0}; Do[AppendTo[a, Count[a + n, k_ /; IntegerQ@ Sqrt@ k]], {n, 79}]; a (* Michael De Vlieger, May 25 2016 *)