This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273195 #18 Feb 27 2020 11:51:28 %S A273195 10,28,50,99,110,130,170,171,190,196,222,230,250,290,310,370,410,430, %T A273195 470,476,530,532,550,590,610,644,650,670,710,730,790,812,830,850,868, %U A273195 890,950,970 %N A273195 The determinant of the difference table of the divisors vanishes for these numbers. %C A273195 Prime power-like numbers (A273200) have nonvanishing determinants. %e A273195 50 is in this sequence because the determinant of DTD(50) = 0. %e A273195 [ 1 2 5 10 25 50] %e A273195 [ 1 3 5 15 25 0] %e A273195 [ 2 2 10 10 0 0] %e A273195 [ 0 8 0 0 0 0] %e A273195 [ 8 -8 0 0 0 0] %e A273195 [-16 0 0 0 0 0] %t A273195 selQ[n_] := Module[{d = Divisors[n], ld}, ld = Length[d]; Det @ Table[ PadRight[ Differences[d, k], ld], {k, 0, ld-1}] == 0]; %t A273195 Select[Range[1000], selQ] (* _Jean-François Alcover_, Jul 15 2019 *) %o A273195 (Sage) %o A273195 def is_A273195(n): %o A273195 D = divisors(n) %o A273195 T = matrix(ZZ, len(D)) %o A273195 for (m, d) in enumerate(D): %o A273195 T[0, m] = d %o A273195 for k in range(m-1, -1, -1) : %o A273195 T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k] %o A273195 return T.det() == 0 %o A273195 print([n for n in range(1, 1000) if is_A273195(n)]) %Y A273195 Cf. A273200. %K A273195 nonn %O A273195 1,1 %A A273195 _Peter Luschny_, May 18 2016