cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273195 The determinant of the difference table of the divisors vanishes for these numbers.

This page as a plain text file.
%I A273195 #18 Feb 27 2020 11:51:28
%S A273195 10,28,50,99,110,130,170,171,190,196,222,230,250,290,310,370,410,430,
%T A273195 470,476,530,532,550,590,610,644,650,670,710,730,790,812,830,850,868,
%U A273195 890,950,970
%N A273195 The determinant of the difference table of the divisors vanishes for these numbers.
%C A273195 Prime power-like numbers (A273200) have nonvanishing determinants.
%e A273195 50 is in this sequence because the determinant of DTD(50) = 0.
%e A273195 [  1  2  5 10 25 50]
%e A273195 [  1  3  5 15 25  0]
%e A273195 [  2  2 10 10  0  0]
%e A273195 [  0  8  0  0  0  0]
%e A273195 [  8 -8  0  0  0  0]
%e A273195 [-16  0  0  0  0  0]
%t A273195 selQ[n_] := Module[{d = Divisors[n], ld}, ld = Length[d]; Det @ Table[ PadRight[ Differences[d, k], ld], {k, 0, ld-1}] == 0];
%t A273195 Select[Range[1000], selQ] (* _Jean-François Alcover_, Jul 15 2019 *)
%o A273195 (Sage)
%o A273195 def is_A273195(n):
%o A273195     D = divisors(n)
%o A273195     T = matrix(ZZ, len(D))
%o A273195     for (m, d) in enumerate(D):
%o A273195         T[0, m] = d
%o A273195         for k in range(m-1, -1, -1) :
%o A273195             T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
%o A273195     return T.det() == 0
%o A273195 print([n for n in range(1, 1000) if is_A273195(n)])
%Y A273195 Cf. A273200.
%K A273195 nonn
%O A273195 1,1
%A A273195 _Peter Luschny_, May 18 2016