cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A273196 a(n) = numerator of T(n, 2) with T(n, m) = Sum_{k=0..n}( 1/(m*k+1) * Sum_{j=0..m*k} (-1)^j*C(k,j)*j^(m*n) ).

Original entry on oeis.org

1, -1, 37, -6833, 56377, -439772603, 27217772209, -202070742359, 80837575181815013, -155957202651688954367, 1770963292969902374951, -16092436217742770647634507, 2975968726866580246152132993, -963399772945511487665759472653, 3891037048609240492066339458106680163
Offset: 0

Views

Author

Peter Luschny, Jun 26 2016

Keywords

Comments

T(n,0) are the natural numbers, T(n,1) the Bernoulli numbers.

Crossrefs

Cf. A273197 (denominator), T(n,0) = A000027, T(n,1) = A027641/A027642.
Also T(n,1)*(1*n+1)! = A129814, T(n,2)*(2*n+1)! = A273198.

Programs

  • Mathematica
    Table[Function[{n, m}, If[n == 0, 1, Numerator@ Sum[1/(m k + 1) Sum[(-1)^j Binomial[k, j] j^(m n), {j, 0, m k}], {k, 0, n}]]][n, 2], {n, 0, 14}] (* Michael De Vlieger, Jun 26 2016 *)
  • Sage
    def T(n, m): return sum(1/(m*k+1)*sum((-1)^j*binomial(k,j)*j^(m*n) for j in (0..m*k)) for k in (0..n))
    def a(n): return T(n, 2).numerator()
    print([a(n) for n in (0..14)])

A273197 a(n) = denominator of T(n, 2) with T(n, m) = Sum_{k=0..n}( 1/(m*k+1) * Sum_{j=0..m*k} (-1)^j*C(k,j)*j^(m*n) ).

Original entry on oeis.org

1, 3, 15, 105, 15, 1155, 455, 15, 19635, 95095, 2145, 31395, 7735, 2805, 10818885, 50115065, 3315, 596505, 80925845, 3795, 18515805, 221847535, 2211105, 204920500785, 1453336885, 148335, 95055765, 287558635, 27897511785, 397299047145, 5613813089885, 8897205
Offset: 0

Views

Author

Peter Luschny, Jun 26 2016

Keywords

Comments

T(n,0) are the natural numbers, T(n,1) the Bernoulli numbers.

Crossrefs

Cf. A273196 (numerators).
T(n,0) = A000027(n) for n>=1.
T(n,1) = A027641(n)/A027642(n) for all n>=0.
T(n,1)*(1*n+1)! = A129814(n) for all n>=0.
T(n,2)*(2*n+1)! = A273198(n) for all n>=0.

Programs

  • Mathematica
    Table[Function[{n, m}, If[n == 0, 1, Denominator@ Sum[1/(m k + 1) Sum[(-1)^j Binomial[k, j] j^(m n), {j, 0, m k}], {k, 0, n}]]][n, 2], {n, 0, 31}] (* Michael De Vlieger, Jun 26 2016 *)
  • Sage
    def T(n, m): return sum(1/(m*k+1)*sum((-1)^j*binomial(k,j)*j^(m*n) for j in (0..m*k)) for k in (0..n))
    def a(n): return T(n, 2).denominator()
    print([a(n) for n in (0..31)])
Showing 1-2 of 2 results.