cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273201 Integers which are prime power-like but not prime powers.

This page as a plain text file.
%I A273201 #25 Mar 24 2020 03:25:02
%S A273201 21,33,39,65,85,95,115,133,145,155,161,185,203,205,215,217,235,259,
%T A273201 261,265,279,287,295,301,305,329,335,341,355,365,371,395,407,413,415,
%U A273201 427,445,451,469,473,481,485,497
%N A273201 Integers which are prime power-like but not prime powers.
%C A273201 For an integer n>0 and not the unity we define DTD(n) to be the difference table of the divisors of n. We say that DTD(n) is positive if all entries in the table are positive and we call DTD(n) monotone if all rows and all columns of the table are nondecreasing (reading from left to right and from top to bottom).
%C A273201 We define an integer n to be prime power-like if and only if DTD(n) is positive and monotone. All prime powers (in the sense of A246655 (but not in the sense of A000961)) are prime power-like integers. Sequence A273200 provides the prime power-like integers. This sequence (A273201) lists the integers which are prime power-like but not prime powers.
%C A273201 Thus we have the inclusions A000040 < A246655 < A273200 and the union A273200 = A273201 U A246655. Integers which have a positive but not monotone DTD are listed in A273199. Integers with a positive DTD are listed in A273130.
%e A273201 95 is in this sequence because the DTD of 95 has positive entries and nondecreasing rows and columns:
%e A273201 [ 1   5  19  95]
%e A273201 [ 4  14  76]
%e A273201 [10  62]
%e A273201 [52]
%t A273201 pplikeQ[n_] := Module[{T, DTD, DTD2}, If[n == 1 || PrimePowerQ[n], Return[False]]; T = Divisors[n]; DTD = Table[Differences[T, k], {k, 0, Length[T]-1}]; If[AnyTrue[Flatten[DTD], NonPositive], Return[False]]; DTD2 = Transpose[PadRight[#, Length[T], Infinity]& /@ DTD]; AllTrue[DTD, OrderedQ] && AllTrue[DTD2, OrderedQ]];
%t A273201 Select[Range[500], pplikeQ] (* _Jean-François Alcover_, Jun 28 2019 *)
%o A273201 (Sage) # uses[is_prime_power_like from A273200]
%o A273201 # Compare script in A273200.
%o A273201 def is_A273201(n):
%o A273201     return not is_prime_power(n) and is_prime_power_like(n)
%o A273201 print(list(filter(is_A273201, range(1, 500))))
%Y A273201 Cf. A000040, A246655, A273102, A273130, A273199, A273200.
%K A273201 nonn
%O A273201 1,1
%A A273201 _Peter Luschny_, May 17 2016