This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273202 #35 May 09 2021 02:16:26 %S A273202 9,21,25,39,49,55,57,111,121,155,169,183,201,203,205,219,237,253,289, %T A273202 291,301,305,309,327,355,361,417,453,489,497,505,529,543,579,597,633, %U A273202 655,689,723,737,755,791,813,841,889,905,921,939,955,961,979,993,1011 %N A273202 Minimal terms of A274720. %C A273202 Terms m of A274720 such that no nontrivial divisor of m is in A274720. %C A273202 The terms consist of the following: %C A273202 p^(b+1) where p is an odd prime and b is the largest exponent k such that p^k divides 2^(p-1)-1 (in particular b=1 if p is not a Wieferich prime). %C A273202 p*q where p < q are odd primes and p divides the order of 2 mod q. %H A273202 Robert Israel, <a href="/A273202/b273202.txt">Table of n, a(n) for n = 1..10000</a> %e A273202 39 is a term because it is in A274720 and its nontrivial divisors 3 and 13 are not in A274720. %p A273202 N:= 10000: # less than 1093^2 so we don't need to worry about powers of %p A273202 # Wieferich primes %p A273202 Primes:= select(isprime, [seq(i,i=3..N/3)]): %p A273202 S:= {}: %p A273202 for q in Primes do %p A273202 m:= numtheory:-order(2,q); %p A273202 ps:= numtheory:-factorset(m) union {q} minus {2}; %p A273202 S:= S union select(`<=`,map(`*`,ps,q),N) %p A273202 od: %p A273202 sort(convert(S,list)); %t A273202 A274720 = Select[Range[1, 2000, 2], !CoprimeQ[MultiplicativeOrder[2, #], #]&]; Select[A274720, NoneTrue[Divisors[#][[2;;-2]], MemberQ[A274720, #]&]&] (* _Jean-François Alcover_, Apr 27 2019 *) %Y A273202 Cf. A001220, A002326, A274720. %K A273202 nonn %O A273202 1,1 %A A273202 _Robert Israel_, Jul 27 2016