This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273226 #44 Mar 19 2025 13:20:47 %S A273226 1,3,6,13,27,51,91,159,273,455,738,1179,1860,2886,4410,6667,9981, %T A273226 14781,21671,31512,45474,65113,92547,130689,183439,255930,355017, %U A273226 489895,672672,919152,1250107,1692846,2282895,3066180,4102224,5468160,7263217,9614436,12684633,16682276 %N A273226 G.f. is the cube of the g.f. of A006950. %H A273226 Robert Israel, <a href="/A273226/b273226.txt">Table of n, a(n) for n = 0..10000</a> %H A273226 M. D. Hirschhorn and J. A. Sellers, <a href="http://dx.doi.org/10.1007/s11139-010-9225-6">Arithmetic properties of partitions with odd parts distinct</a>, Ramanujan J. 22 (2010), 273--284. %H A273226 M. S. Mahadeva Naika and D. S. Gireesh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Naika/naika2.html">Arithmetic Properties of Partition k-tuples with Odd Parts Distinct</a>, JIS, Vol. 19 (2016), Article 16.5.7 %H A273226 L. Wang, <a href="http://dx.doi.org/10.1142/S1793042115500773">Arithmetic properties of partition triples with odd parts distinct</a>, Int. J. Number Theory, 11 (2015), 1791--1805. %H A273226 L. Wang, <a href="http://dx.doi.org/10.1017/S0004972715000647">Arithmetic properties of partition quadruples with odd parts distinct</a>, Bull. Aust. Math. Soc., doi:10.1017/S0004972715000647. %H A273226 L. Wang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Wang2/wang31.html">New congruences for partitions where the odd parts are distinct</a>, J. Integer Seq. (2015), article 15.4.2. %F A273226 G.f.: Product_{k>=1} (1 + x^k)^3 / (1 - x^(4*k))^3, corrected by _Vaclav Kotesovec_, Mar 25 2017. %F A273226 a(n) ~ 3*exp(sqrt(3*n/2)*Pi) / (16*n^(3/2)). - _Vaclav Kotesovec_, Mar 25 2017 %p A273226 N:= 50: %p A273226 G:= mul((1+x^k)^3,k=1..N)/mul((1-x^(4*k))^3,k=1..N/4): %p A273226 S:= series(G,x,N+1): %p A273226 seq(coeff(S,x,j),j=0..N); # _Robert Israel_, Jan 21 2019 %t A273226 s = QPochhammer[-1, x]^3/(8*QPochhammer[x^4, x^4]^3) + O[x]^40; CoefficientList[s, x] (* _Jean-François Alcover_, May 20 2016 *) %Y A273226 Cf. A006950. %K A273226 nonn %O A273226 0,2 %A A273226 _M.S. Mahadeva Naika_, May 18 2016 %E A273226 Edited by _N. J. A. Sloane_, May 26 2016