cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273228 G.f. is the fourth power of the g.f. of A006950.

This page as a plain text file.
%I A273228 #25 Mar 19 2025 13:21:14
%S A273228 1,4,10,24,55,116,230,440,819,1480,2602,4480,7580,12604,20620,33272,
%T A273228 53029,83520,130088,200600,306488,464168,697150,1039032,1537435,
%U A273228 2259300,3298428,4785880,6903657,9903040,14129846,20058488,28336790,39845456,55778050,77747328,107924347,149221160
%N A273228 G.f. is the fourth power of the g.f. of A006950.
%C A273228 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H A273228 G. C. Greubel, <a href="/A273228/b273228.txt">Table of n, a(n) for n = 0..1000</a>
%H A273228 M. D. Hirschhorn and J. A. Sellers, <a href="http://dx.doi.org/10.1007/s11139-010-9225-6">Arithmetic properties of partitions with odd parts distinct</a>, Ramanujan J. 22 (2010), 273--284.
%H A273228 M. S. Mahadeva Naika and D. S. Gireesh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Naika/naika2.html">Arithmetic Properties of Partition k-tuples with Odd Parts Distinct</a>, JIS, Vol. 19 (2016), Article 16.5.7
%H A273228 L. Wang, <a href="http://dx.doi.org/10.1142/S1793042115500773">Arithmetic properties of partition triples with odd parts distinct</a>, Int. J. Number Theory, 11 (2015), 1791--1805.
%H A273228 L. Wang, <a href="http://dx.doi.org/10.1017/S0004972715000647">Arithmetic properties of partition quadruples with odd parts distinct</a>, Bull. Aust. Math. Soc., doi:10.1017/S0004972715000647.
%H A273228 L. Wang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Wang2/wang31.html">New congruences for partitions where the odd parts are distinct</a>, J. Integer Seq. (2015), article 15.4.2.
%F A273228 G.f.: Product_{k>=1} (1 + x^k)^4 / (1 - x^(4*k))^4, corrected by _Vaclav Kotesovec_, Mar 25 2017
%F A273228 Expansion of 1 / psi(-x)^4 in powers of x where psi() is a Ramanujan theta function.
%F A273228 a(n) ~ exp(sqrt(2*n)*Pi) / (2^(9/4)*n^(7/4)). - _Vaclav Kotesovec_, Mar 25 2017
%p A273228 Digits:=200:with(PolynomialTools): with(qseries): with(ListTools):
%p A273228 GenFun:=series(etaq(q,2,1000)^4/etaq(q,1,1000)^4/etaq(q,4,1000)^4,q,50):
%p A273228 CoefficientList(sort(convert(GenFun,polynom),q,ascending),q);
%t A273228 nmax = 30; CoefficientList[Series[Product[(1 + x^k)^4 / (1 - x^(4*k))^4, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Mar 25 2017 *)
%t A273228 CoefficientList[Series[1/(QPochhammer[q, -q]*QPochhammer[q^2, q^2])^4, {q, 0, 50}], q] (* _G. C. Greubel_, Apr 17 2018 *)
%Y A273228 Cf. A006960, A273226.
%K A273228 nonn
%O A273228 0,2
%A A273228 _M.S. Mahadeva Naika_, May 18 2016
%E A273228 Edited by _N. J. A. Sloane_, May 26 2016