A273230 Squares that remain squares if you decrease them by 3 times a repunit with the same number of digits.
4, 49, 529, 4489, 38809, 344569, 363609, 375769, 444889, 558009, 597529, 700569, 7198489, 35366809, 44448889, 65983129, 4444488889, 5587114009, 83574762649, 335330171929, 359763638809, 390241344249, 403831017529, 407200963129, 435775577689, 444444888889, 453557800089
Offset: 1
Examples
4 - 3*1 = 1 = 1^2; 49 - 3*11 = 16 = 4^2; 529 - 3*111 = 196 = 14^2.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
Maple
P:=proc(q,h) local n; for n from 1 to q do if type(sqrt(n^2-h*(10^(ilog10(n^2)+1)-1)/9),integer) then print(n^2); fi; od; end: P(10^9,3);
-
Mathematica
sol[k_] := Block[{x, e = IntegerLength@k, d = Divisors@ k}, Union[ #+k/# & /@ Select[ Take[d, Ceiling[ Length@d/2]], EvenQ[x = #+k/#] && IntegerLength[ x^2/4] == e &]]^2/4]; r[n_] := 3 (10^n-1)/9; Flatten[sol /@ r /@ Range[12]] (* Giovanni Resta, May 18 2016 *)
Comments